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1 Introduction

The Bäcklund transformation (BT) was introduced in 1880 by A. V. Bäcklund [Bac-80]
as a transformation between 3-dimensional surfaces. By applying Bianchi’s integrability
condition,

∂2u

∂x1∂x2
− ∂2u

∂x2∂x1
= 0, (1)

discussed subsequently in section (3), a Bäcklund transformation can be used to generate
a series of solutions to a partial differential equation from a known trivial solution.

A Bäcklund transformation transforms a nonlinear partial differential equation into an-
other partial differential equation. Thus, a solution to the second partial differential
equation must be compatible to the first partial differential equation. Hence, application
of the Bäcklund transformation can provide a powerful method for generating solutions
to nonlinear PDEs.

Examples of well known Bäcklund transformations are [Miu-68a][Miu-68b] a) theMiura
transformation, which transforms the KdV equation into the modified KdV equation and,
b) the Gardner transformation which transforms the KdV equation into the Gardner
equation.

An auto-Bäcklund transformation is a transform that leaves a partial differential equation
invariant. It can also provide a method whereby a known solution to a partial differ-
ential equation can be transformed into a different second solution to the same partial
differential equation. This solution can then be used to obtain a third solution, and so
on. However, it may not be possible to carry this process on to find an infinite sequence,
or even many solutions, as they can repeat at some stage.

There is no known general systematic method for generating Bäcklund transformations,
and therefore this subject continues to be an active area of research. Detailed discussion
on the origin of the Bäcklund transformation, along with a wide variety of applications,
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can be found in the excellent books by Rogers and Shadwick [Rog-82], and Dodd, et al.
[Dod-82].

2 Applications of the Bäcklund transformation method

2.1 Bäcklund transformation of Burgers equation

Burgers equation is given by,
ut + uux − αuxx = 0, (2)

where u = u(x, t) and α is the conduction coefficient, and we wish to find a solution
using the Bäcklund transformation method.

A Bäcklund transformation that transforms Burgers equation to the heat equation,

vt = vxx, (3)

is given by

vx = −vu
2α
, vt =

u2v

4α
− vux

2
, (4)

where v = v(x, t) and the first equation represents the x-part of the BT and the second
equation the t-part.

That eqn. (4) is actually the required BT can be easily demonstrated. First we differen-
tiate the x-part with respect to t and the t-part with respect to x, then on subtracting
we obtain after some manipulation,

ut + uux − αuxx = −uvt
v
− u2vx

2v
+
αvxux
v

. (5)

Now, the left hand side of eqn. (5) is the Burgers equation (2) and is therefore equal
to zero. Consequently, for compatibility, the right hand side must also be equal to zero.
Therefore, on setting the right hand side to zero and rearranging, we obtain

vt = −v
u

(
u2vx
2v
− αvxux

v

)
. (6)

We now subtract α multiplied by the derivative of the x-part of eqn. (4) from eqn. (6),
to obtain

vt − αvxx =
ux
2u

(2αvx + vu) . (7)

But the left hand side of eqn. (7) is the heat equation (3), and is therefore equal to zero.
Assuming that u 6= 0, compatibility considerations require that the bracketed term on
the right hand side is equal to zero. Therefore, on setting the bracketed term to zero and
rearranging we arrive at the x-part of the Bäcklund transformation, eqn. (4), i.e.

vx = −vu
2α
. (8)

Therefore, by definition we have (2αvx + vu) = 0. Thus, we have arrived at the point
where, given a solution to the heat eqn (3), we can derive a solution to Burgers equation
by employing the Bäcklund transformation, eqn. (4). A maple program that derives this
result is given in Listing (1).
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Listing 1: Maple program that performs a Bäcklund transformation of a heat equation solution 1 to a
Burgers equation solution

# Backlund transformation of Heat equation solution

# to Burgers equation solution

restart; with(PDEtools): with(PolynomialTools):

with(plots):

alias(u=u(x,t)): alias(v=v(x,t)):

pde_HeatEqn :=diff(v,t)-alpha*diff(v,x,x)=0;

pde_Burgers :=diff(u,t)+u*diff(u,x)-alpha*diff(u,x,x)=0;

BTx:=diff(v,x)= -1/(2* alpha)*u*v;

BTt:=diff(v,t)=1/(4* alpha)*u^2*v - v*diff(u,x)/2;

eqn1:=diff(BTx ,t)-diff(BTt ,x);

eqn2:= expand(eqn1 *4* alpha);

# Rearrange eqn2

eqn3:=-remove(has ,rhs(eqn2) ,{diff(v,x),diff(v,t)}) =

select(has ,rhs(eqn2) ,{diff(v,x),diff(v,t)});

# Simplify eqn3

eqn4:= expand(eqn3 /(2*v));

# LHS of eqn4 is Burgers eqn and , thus , equal to zero! Therefore ,

eqn5:= isolate(eval(rhs(eqn4)*(2*v)=0),diff(v,t));

eqn6:=alpha*diff(BTx ,x);

eqn7:= expand(eqn5 -eqn6);

# LHS eqn7 is Heat eqn and thus equal to zero.

# Therefore , compatability considerations require that

# the RHS of eqn7 is also equal to zero!

eqn8:= simplify(eval(rhs(eqn7)=0), symbolic);

# For eqn8 to be true , the braketed term must equal zero.

#This is true as it is equal to BTx , which is zero by definition , i.e.

eqn9:= isolate(eqn8 , diff(v,x));

As an example, we consider the following classical source solution to to the heat equation(3),

v =
1√

(4απt)
exp(−x2/4αt), t > 0, (9)

which, from the x-part of the Bäcklund transformation, u = 2αvx/v, we obtain the the
following solution to Burgers equation (2),

u =
x

t
. (10)

A plot of this solution if given in Fig (1).

A second example is a slightly different source solution to to the heat equation(3),

v = 1 +
1√

(4απt)
exp(−x2/4αt), t > 0, (11)

which, from the x-part of the Bäcklund transformation, u = 2αvx/v, we obtain the
following very different solution to Burgers equation (2),

u =
x

t

1√
(4απt)

exp(−x2/4αt)

1 +
1√

(4απt)
exp(−x2/4αt)

. (12)

A plot of this solution if given in Fig (2).

A third (variable separable) solution to the heat equation (3) is,

v = A sin
(πx
L

)
exp

(
−απ

2

L2
t

)
, (13)
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Figure 1: Initial profile at t = 0.1 of Burgers equation solution, u(x, t) = x/t. The solution moves towards
a horizontal profile such that u(x,∞) = 0.

where A and L are arbitrary constants. Thus, again from u = 2αvx/v we obtain the
following stationary (non-time-varying) solution to Burgers equation (2),

u = −2απ

L
cot
(πx
L

)
. (14)

A plot of this solution if given in Fig (3).

Thus, the above examples demonstrate that the Bäcklund transformation can produce a
variety of very different solutions to the Burgers equation.

A maple program that derives these results and generates accompanying animations is
given in Listing (2).

Listing 2: Maple program that performs a Bäcklund transformation of a heat equation solution 2 to a
Burgers equation solution

# Backlund transformation of Heat equation solution 2

# to Burgers equation solution

restart;with(PDEtools): with(PolynomialTools):

with(plots):

alias(u=u(x,t)): alias(v=v(x,t)):

# Heat Eqn

pde_HeatEqn :=diff(v,t)-alpha*diff(v,x,x)=0;

# Burgers Eqn

pde_BurgersEqn :=diff(u,t)+u*diff(u,x)-alpha*diff(u,x,x)=0;

# Known Heat eqn solution (1) - point heat source

eqn1:=v=1/ sqrt (4* alpha*Pi*t)*exp(-x^2/(4* alpha*t));

#assign(eqn1);

# Check Heat eqn solution (1)

pdetest(eqn1 ,pde_HeatEqn);v1:=rhs(eqn1);

# Generate Burgers eqn solution (1)

eqn2:=u=-2*alpha*diff(v1,x)/v1;

# Check Burgers eqn solution (1)

pdetest(eqn2 ,pde_BurgersEqn);

# Burgers equation plot data

dat1 :={ alpha =1};

# Plot results

# ============

z1:=subs(dat1 ,rhs(eqn2)); # Set data values

# Animate solution

animate(z1 ,x=-10..10,t=0.1..5 ,
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Figure 2: Initial profile at t = 0 of Burgers equation N-wave solution,

u(x, t) =
x

t

1√
(4απt)

exp(−x2/4αt)/

(
1 +

1√
(4απt)

exp(−x2/4αt)

)
for α = 1. The solution flattens out to

a horizontal profile such that u(x,∞) = 0.

Figure 3: Initial profile at t = 0.1 of Burgers equation stationary solution, u(x, t) = −2απ

L
cot
(
πx
L

)
for

α = 1 and L = 100.

numpoints =300, frames =50, axes=framed ,

labels =["x","u"],thickness =3,

title=" Burgers equation solution",

labelfont =[TIMES , ROMAN , 16], axesfont =[TIMES , ROMAN , 16],

titlefont =[TIMES , ROMAN , 16]);

# Known Heat eqn solution (2) - point heat source

eqn3:=v=1+1/ sqrt (4* alpha*Pi*t)*exp(-x^2/(4* alpha*t));

# Check Heat eqn solution (2)

pdetest(eqn3 ,pde_HeatEqn);v2:=rhs(eqn3);

# Generate Burgers eqn solution (2)

eqn4:=u=-2*alpha*diff(v2,x)/v2;

# Check Burgers eqn solution (2)

pdetest(eqn4 ,pde_BurgersEqn);

# Burgers equation plot data

dat2 :={ alpha =1};

# Plot results

# ============
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z2:=subs(dat2 ,rhs(eqn4)); # Set data values

# Animate solution

animate(z2 ,x=-2..2,t=0.1..5 ,

numpoints =300, frames =50, axes=framed ,

labels =["x","u"],thickness =3,

title=" Burgers equation - N-wave solution",

labelfont =[TIMES , ROMAN , 16], axesfont =[TIMES , ROMAN , 16],

titlefont =[TIMES , ROMAN , 16]);

# Known Heat eqn solution (3)

eqn5:=v=A*sin(Pi*x/L)*exp(-alpha *(Pi/L)^2*t);

# Check Heat eqn solution (3)

pdetest(eqn5 ,pde_HeatEqn);v3:=rhs(eqn5);

# Generate Burgers eqn solution (3)

eqn6:=u=-2*alpha*diff(v3,x)/v3;

# Check Burgers eqn solution (3)

pdetest(eqn6 ,pde_BurgersEqn);

# Burgers equation plot data

dat3 :={ alpha=1,A=1,L=100};

# Plot results

# ============

z3:=subs(dat3 ,rhs(eqn6)); # Set data values

# Animate solution

animate(z3 ,x=0.1..10 ,t=0..80 ,

numpoints =300, frames =50, axes=framed ,

labels =["x","u"],thickness =3,

title=" Burgers equation - stationary solution",

labelfont =[TIMES , ROMAN , 16], axesfont =[TIMES , ROMAN , 16],

titlefont =[TIMES , ROMAN , 16]);

2.2 Auto-Bäcklund transformation of the sine-Gordon equation

The sine-Gordon equation is given by

uxt = sinu, (15)

and we wish to find a solution using the Bäcklund transformation method. An auto-
Bäcklund transformation for eqn. (15) is defined by the following pair of coupled partial
differential equations.

vx = ux + 2λ sin

(
v + u

2
)

)
,

vt = −ut +
2

λ
sin

(
v − u

2

)
,

(16)

where u = u(x, t) and v = v(x, t). We can easily check that this is so by differentiating
the first equation by t and the second by x to obtain,

vxt = uxt + 2 sin

(
v − u

2

)
cos

(
v + u

2
)

)
,

vxt = −uxt + 2 sin

(
v + u

2

)
cos

(
v − u

2
)

)
.

(17)

We see immediately that this is correct by equating eqns. (17) when we obtain the
original eqn. (15), whilst adding them yields a second sine-Gordon equation, i.e.

vxt = sin v. (18)

This means that from a known solution to eqn. (15), we should be able to use the
transformation of eqns. (16) to obtain a second solution.
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Clearly, u = 0 is a solution to eqn. (15) and, on substituting this solution 2 is into the
auto- Bäcklund transformation of eqn. (16), we obtain,

vx = 2λ sin
v

2
, vt =

2

λ
sin

v

2
, (19)

which can be readily solved for v. Integrating both equations we obtain,∫
dv

sin
v

2

= 2λ

∫
dx, → 2λx = 2 ln (csc (1/2v)− cot (1/2v)) + f (t) , (20)

∫
dv

sin
v

2

=
2

λ

∫
dt, → 2

t

λ
= 2 ln (csc (1/2v)− cot (1/2v)) + g (x) . (21)

Then, after subtracting and rearranging we obtain,

f (t)− 2λx = g (x)− 2
t

λ
(22)

from which it follows that, for compatibility, we must have,

f(t) = K − 2t

λ
, g(x) = K − 2λx, (23)

where K is an arbitrary constant. Thus, on adding eqns. (20) and (21) and rearranging,
we obtain the following new kink soliton solution to the sine-Gordon equation,

tan
v

4
= C exp

(
λx+

t

λ

)
, (24)

where C = exp(−K/2).

A plot of this solution if given in Fig (4).

Figure 4: Initial profile at t = −20 of the sine-Gordon equation kink soliton solution,

v(x, t) = 4 arctan

[
C exp

(
λx+

t

λ

)]
, for C = 1 and λ = 1. Solution move right to left.

In theory we can now use this solution to obtain a second analytical solution, and the
second to obtain a third, etc. However, the resulting equations are not easily solved, even
with a CAS such as Maple. Nevertheless, we can use this result, along with nonlinear

2This starting point is known as the initiating or seed solution

Graham W Griffiths 7 14 April 2012, Revised 02 March 2017



superposition, to readily obtain new solutions. This approach is demonstrated in a later
section.

A maple program that derives these results and generates an accompanying animation
is given in Listing (3).

Listing 3: Maple program that derives a solution to the Sine-Gordon equation using the Auto-Bäcklund
transformation

# Derivation of solution to Sine -Gordon Equation using

# Auto -Backlund Transformation.

restart;with(PDEtools): with(PolynomialTools):

with(plots):

alias(u=u(x,t)): alias(v=v(x,t)):

# Auto -Backlund transformation for sine -Gordon equation

aBT [1]:=(u,v) -> diff(v,x)=diff(u,x)+2* lambda*sin((v+u)/2);

aBT [2]:=(u,v) -> -diff(v,t)=diff(u,x)+(2/ lambda)*sin((v-u)/2);

# Set u=0 in aBT

ode1:=aBT [1](0,v); ode2:=aBT [2](0,v);

# Negate alias ’

alias(u=u): alias(v=v):

# Integrating ode1 and ode2

eqn1 :=2* lambda*x=int (1/ sin(v/2),v)+f(t);

eqn2 :=(2/ lambda)*t=int (1/ sin(v/2),v)+g(x);

# rearranging: eqn3:=eqn1 -eqn2;

eqn3:=eqn1 -eqn2;

#eqn3 :=2* lambda*x+f(x) = g(t)+2*x/lambda;

# Therefore we must have:

f(t):=K-2*t/lambda; g(x):=K-2* lambda*x;

eqn4:=eqn1+eqn2;

eqn5:= isolate( eqn4 , ln(csc (1/2*v)-cot (1/2*v)) );

eqn6:=exp(lhs(eqn5))=exp(rhs(eqn5));

eqn7:= simplify(subs(K=-2*ln(C),eqn6), power);

eqn8:= simplify(convert(eqn7 ,tan),symbolic);

eqn9:= convert(eqn8 ,tan);

# Sine -Gordon equation plot data

dat1 :={C=1,lambda =1};

# Plot results

# ============

z1:=subs(dat1 ,rhs(isolate(eqn9 ,v))); # Set data values

# Animate solution

animate(z1 ,x=-30..30,t=-20..20,

numpoints =300, frames =50, axes=framed ,

labels =["x","u"],thickness =3,

title="Sine -Gordon equation solution",

labelfont =[TIMES , ROMAN , 16], axesfont =[TIMES , ROMAN , 16],

titlefont =[TIMES , ROMAN , 16]);

2.3 Miura transformation of the KdV equation

The Korteweg-deVries (KdV) equation is defined as,

ut − 6uux + uxxx = 0, (25)

and we desire to obtain a solution to this equation by application of the Miura transfor-
mation [Miu-68a], given by

u = v2 + vx, (26)

where u = u(x, t) and v = v(x, t). This equation, when substituted directly into eqn.
(25), yields (

2v +
∂

∂x

)(
vt − 6v2vx + vxxx

)
= 0. (27)
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Thus, if v is a solution to,
vt − 6v2vx + vxxx = 0, (28)

which is known as the modified KdV (mKdV) equation, then eqn. (4) will yield a solution
to eqn. (25). However, a solution to eqn. (25) does not imply a solution to equation(28)
owing to the additional operator of eqn. (27).

Thus, equations (4) and (28) can be regarded as a Bäcklund transformation as they
provide a derivation route to obtain solutions to the KdV equation. For example, a kink
soliton solution to eqn. (28) is,

v = −k tanh
[
k
(
x− x0 − 2k2t

)]
; (29)

and, on substituting eqn. (29) into eqn. (4), we obtain the following hump soliton
solution to eqn. (25)

u = k2
(

2 tanh
[
k
(
x+ x0 + 2k2t

)]2 − 1
)
. (30)

Plots of these solutions are given in Figs (5) and (6).

Figure 5: Initial profile at t = −50 of mKdV equation anti-kink soliton solution,
v(x, t) = −k tanh

[
k
(
x− x0 − 2k2t

)]
for k = 1 and x0 = 0. Solution move right to left.

A Maple program that generate a new KdV solution from a known mKdV solution by
implementing the Miura transformation, and that also generates animations for each, is
given in Listing (4).

Listing 4: Maple program that transforms a mKDV equation solutionn to a KdV equation solutionn

# Miura transformation of mKdV equation to KdV equation

with(plots):

alias(u=u(x,t)): alias(v=v(x,t)):

# mKdV equation

pde_mKdV :=diff(v,t) -6*v^2* diff(v,x) + diff(v,x,x,x)=0;

# KdV equation

pde_KdV :=diff(u,t) -6*u*diff(u,x) + diff(u,x,x,x)=0;

# Known mKdv solution

sol1:=v=-k*tanh(k*(x+x0+2*k^2*t));

# mKdV plot data

dat1 :={k=0.5,x0=0};

# Plot results

# ============
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Figure 6: Initial profile at t = −20 of KdV equation hump soliton solution,

u = k2
(

2 tanh
[
k
(
x+ x0 + 2k2t

)]2 − 1
)

for k = 1 and x0 = 0. Solution move right to left.

z1:=subs(dat1 ,rhs(sol1)); # Set data values

# Animate solution

animate(z1 ,x=-50..10,t=0..80 ,

numpoints =300, frames =50, axes=framed ,

labels =["x","v"], thickness =3,

title="mKdV equation - kink soliton",

labelfont =[TIMES , ROMAN , 16], axesfont =[TIMES , ROMAN , 16],

titlefont =[TIMES , ROMAN , 16]);

# Check mKdV solution

pdetest(sol1 ,pde_mKdV);

# Define Miura transformation

MiuraTrans :=u=v^2+ diff(v,x);

# Generate KdV solution using Miura transformation

sol2:= simplify(eval(subs(sol1 ,MiuraTrans)),size);

# Check KdV solution

pdetest(sol2 ,pde_KdV);

# KdV plot data

dat2 :={k=0.5,x0=0};

# Plot results

# ============

z:=subs(dat2 ,rhs(sol2)); # Set data values

# Animate solution

animate(z,x=-50..10,t=0..80 ,

numpoints =300, frames =50, axes=framed ,

labels =["x","u"],thickness =3,

title ="KdV equation - hump soliton",

labelfont =[TIMES , ROMAN , 16], axesfont =[TIMES , ROMAN , 16],

titlefont =[TIMES , ROMAN , 16]);

2.4 Bäcklund transformation of the KdV equation

We will now discuss a more convenient transformation than the Miura transformation
due to Wahlquist and Estabrook [Wah-73].

Because the KdV equation is Galilean invariant and, following Drazin and Johnson
[Dra-92], we decide to work with u − λ rather than u. This has the effect of modifying
the Miura transformation of eqn. (4) to

u = λ+ v2 + vx, (31)
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where u = u(x, t), v = v(x, t) and λ is a real parameter. Thus, the mKdV equation (28)
becomes

vt − 6(v2 + λ)vx + vxxx = 0. (32)

Now eqns (31) and (32) are an alternative Bäcklund transformation as they imply KdV
equation (25) for u. Clearly, we observe that if v is a solution to eqn. (32) then so is −v.
From this observation, Wahlquist and Estabrook were led to introduce the two functions

u1 = λ+ v2 + vx, u2 = λ+ v2 − vx (33)

where λ and v are given. By adding and subtracting these equations we obtain

u1 − u2 = 2vx, u1 + u2 = 2
(
λ+ v2

)
. (34)

We now introduce an additional useful transformation,

ui =
∂wi
∂x

, w = w(x, t), (i = 1, 2), (35)

from which we obtain, using eqns (33) and (34),

w1 − w2 = 2v (36)

and

(w1 + w2)x = 2λ+
1

2
(w1 − w2)

2 . (37)

Equation (36) is obtained by a single integration that requires the addition of an arbitrary
function in f(t). However, this arbitrary function can be absorbed into the definition
of wi without changing ui and, therefore, there is no loss of generality by setting this
function to zero. Equation (37) constitutes the x-part of the Bäcklund transformation
for w1 and w2 which, along with eqn (35), enable solutions to the KdV equation to be
generated. From eqns (32)-(36) and some algebraic manipulation we obtain the following
t-part of the Bäcklund transformation,

(w1 − w2)t − 3
(
w2

1x − w2
2x

)
+ (w1 − w2)xxx = 0. (38)

A Maple program that generates eqns (37) and (38) from the KdV equation by application
of the Wahlquist and Estabrook transformation, is given in Listing (5).

Listing 5: Maple program that performs a Wahlquist and Estabrook transformation on the KDV equation

# Wahlquist and Estabrook transformation of mKdV equation

# to KdV equation

restart;with(PDEtools): with(PolynomialTools):

with(plots):

alias(u=u(x,t),v=v(x,t)): alias(w[1]=w[1](x,t),w[2]=w[2](x,t)):

# KdV and mKdV equations

pde_KdV :=diff(u,t) -6*u*diff(u,x) + diff(u,x,x,x)=0;

pde_mKdV :=diff(v,t) -6*v^2* diff(v,x) + diff(v,x,x,x)=0;

# Wahlquist and Estabrook mKdV equation

pde_mKdV_WE :=diff(v, t) -6*(v^2+ lambda)*(diff(v, x)) +

diff(v, x, x, x)=0;

# Define transformations

# Miura

MiuraTrans :=u=v^2+ diff(v,x);

#Wahlquist and Estabrook

WE_Trans := isolate(subs(u=u-lambda ,MiuraTrans),u);

# Derive new mKdV solution and check correct

mKdV_WE :=eval(subs(WE_Trans ,pde_KdV));

mKdV_CK :=2*v*pde_mKdV_WE + diff(pde_mKdV_WE ,x);

testeq(simplify(lhs(mKdV_WE)-lhs(mKdV_CK),size));
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# Note: u and -u are both solutions of mKdV eqn

eqn1:=subs(u=u[1], WE_Trans);

eqn2:=subs({u=u[2],v=-v},WE_Trans);# unassign(’u’);

# Add and subtract WE transformations

eqn3:=eqn1 -eqn2; eqn4:=eqn1+eqn2;

# substitute u=diff(w,x)

eqn5:=subs(u[1]= diff(w[1],x),u[2]= diff(w[2],x),eqn3);

eqn6:=subs(u[1]= diff(w[1],x),u[2]= diff(w[2],x),eqn4);

eqn7:=int(lhs(eqn5),x)=int(rhs(eqn5),x);

eqn8:=subs(isolate(eqn7 ,v),eqn6);

eqn9:=subs(isolate(eqn7 ,v),pde_mKdV_WE);

eqn10 :=rhs(eqn8)/2=lhs(eqn8)/2;

# Final result

eqn11 := simplify(subs(eqn10 ,eqn9),size);

The Wahlquist and Estabrook transformation is relatively straight forward to use; for
example, if we set w2 = 0, eqn (37) becomes

w1x = 2λ+
1

2
w2

1, (39)

which on integration yields

w1 = −2k tanh [kx+ f(t)] (40)

where we have set λ = −k2 and f is an arbitrary function. Similarly, eqn (38) becomes

w1t − 3w2
1x + w1xxx = 0 (41)

and, using eqn (39) twice to give w1xxx = w2
1x + w2

1w1x we obtain

w1t− 2w1x

(
w1x +

1

2
w2

1

)
= 0. (42)

Then, using eqn (39) once more for simplification, we can write eqn (41) as

w1t + 4k2w1x = 0. (43)

This represents an advection equation with velocity 4k2, and which has the following
general solution

w1 = g(x, t) = g
(
x− 4k2t

)
. (44)

Now, for consistency with eqn. (40), the function f(t) must take the form

f(t) = −4k3t− kx0, (45)

where x0 is an arbitrary constant. The Bäcklund transformation therefore yields,

w1 = −2k tanh
(
[k
(
x− x0 − 4k2t

)]
. (46)

Finally, we obtain from eqn (35)

u1 = −2k2sech2
[
k
(
x− x0 − 4k2t

)]
, (47)

which is the same single soliton solution to the KdV equation, eqn (30), that we obtained
using the Miura transformation and that is plotted in Fig( (6). This solution is valid for
|w1| < 2k. However, for |w1| > 2k we obtain the singular solution,

w1 = −2k2 coth
[
k
(
x− x0 − 4k2t

)]
, (48)

and
u1 = −2k2

(
1− coth2

[
k
(
x− x0 − 4k2t

)])
. (49)

A Maple program that derives the above example by application of the Wahlquist and
Estabrook transformation, is given in Listing (6).
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Listing 6: Maple program that performs a Wahlquist and Estabrook transformation on a KdV equation
solution to obtain a mKdV equation solution

# Wahlquist and Estabrook transformation of KdV solution

# to mKdV solution

restart;with(PDEtools): with(PolynomialTools):

with(plots):

alias(u=u(x,t),v=v(x,t)): alias(w[1]=w[1](x,t),w[2]=w[2](x,t)):

# KdV and mKdV equations

pde_KdV :=diff(u,t) -6*u*diff(u,x) + diff(u,x,x,x)=0;

pde_mKdV :=diff(v,t) -6*v^2* diff(v,x) + diff(v,x,x,x)=0;

# Wahlquist and Estabrook mKdV equation

pde_mKdV_WE :=diff(v, t) -6*(v^2+ lambda)*(diff(v, x))+diff(v, x, x, x)=0;

# x-part of BT

eqn1 := diff(w[1], x)+diff(w[2], x) = 2*((1/2)*w[1] -(1/2)*w[2]) ^2+

2* lambda;

#t-part of BT

eqn2 := (1/2) *(diff(w[1], t)) -(1/2)*(diff(w[2], t)) -

3*( diff(w[1], x))^2*(1/2) +

3*( diff(w[2], x))^2*(1/2) +

(1/2) *(diff(w[1], x, x, x)) -

(1/2) *(diff(w[2], x, x, x)) = 0;

# Set w[2]=0 in x-part of BT

eqn3:=eval(subs({w[2]=0} , eqn1));

# Solve ODE and rearrange

eqn4:=eval(int (1/(( w1^2+4* lambda)/2),w1)=int(1,x)+f(t));

eqn5:= isolate(simplify(subs(lambda=-k^2,eqn4),symbolic),w1);

# Set w[2]=0 in t-part of BT and cross multiply

eqn6:=eval(subs({w[2]=0} , eqn2));

eqn6a :=numer(lhs(eqn6))*denom(rhs(eqn6))=numer(rhs(eqn6))*

denom(lhs(eqn6));

# Simplify again by substitution

eqn7:=eval(diff(eqn3 ,x));

eqn7a :=lhs(eqn7)=subs(eqn3 ,rhs(eqn7));

eqn7b :=eval(diff(eqn7a ,x));

# Simplify again by substitution

eqn8:= isolate(subs(eqn7b ,eqn6),diff(w[1],t));

eqn8a := simplify(eqn8 ,size);

# Simplify again by substitution

eqn9:=subs(eqn3 ,eqn8a);

eqn9a :=subs ((1/2)*w[1]^2+2* lambda=diff(w[1],x),eqn9);

eqn9b :=subs(lambda=-k^2,eqn9a);

eqn9c :=lhs(eqn9b)- rhs(eqn9b) = 0;

# Solve advection pde and test

sol:= pdsolve(eqn9c);pdetest(sol ,eqn9c);

# Solve for f(t)

eqn10 :=k*x+k*f(t)=c*(-x+4*k^2*t)/(4*k^2);

f1:= solve(subs(c=-4*k^3,eqn10),f(t));

# Final solution for mKdV equation

eqn11 :=subs(f(t)=f1 ,eqn5);

# Final solution for KdV equation

eqn12 :=u1=simplify(diff(rhs(eqn11),x),trig);

3 Nonlinear superposition

3.1 Bianchi’s Permutability Theorem

We need to first introduce the Bianchi Permutability Theorem that provides a simplified
method of obtaining solutions to evolutionary equations by means of nonlinear superpo-
sition.

Theorem :[Con-08, 101]
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Given a nonlinear PDE F (u, x, t) = 0 and its auto-Bäcklund transformationBT (u, U ;λ) =
0, if one applies this BT to a given solution un−1 with two different spectral parameters,
BT (un−1, un;λn) = 0 and BT (un−1, ũn;λn+1) = 0, then there exists a fourth solution
un+1 which can be obtained by either BT (un, un+1;λn+1) = 0 or BT (ũn, un+1;λn) = 0,
i.e. permuting the two spectral parameters.

[Put simply: from three distinct separate solutions to a given PDE, a fourth solution may
be constructed by purely algebraic means using a suitable auto-Bäcklund transformation,
if one exists].

This theorem is represented diagrammatically in figure 7.

Figure 7: Diagrammatic representation of Bianchi’s theorem of permutability [Dra-92, p115].

No general proof of this theorem is known to exist and therefore it has to be proved for
each PDE admitting an auto-Bäcklund transformation. Therefore, we will illustrate its
use by examples.

3.2 Nonlinear superposition applied to the KdV equation

We have now developed the tools to enable a more straightforward method of obtaining
solutions to the KdV equation using nonlinear superposition. From the above Bäcklund
transformation we generate two solutions from the same seed solution but using two
different values of λ. Thus, the x-part of the Bäcklund transformation, i.e. eqn. (37),
can be written as

(w1 + w0)x = 2λ1 + 1
2

(w1 − w0)
2 ,

(w2 + w0)x = 2λ2 + 1
2

(w2 − w0)
2 .

(50)

Similarly, we construct two additional solutions: w12 from w1 and λ1; and w21 from w2

and λ2
(w12 + w1)x = 2λ1 + 1

2
(w12 − w1)

2 ,

(w21 + w2)x = 2λ2 + 1
2

(w21 − w2)
2 .

(51)

Now, the above Bianchi theorem of permutability states that w12 and w21 in eqns (51)
will be equal, i.e.

w12 = w21. (52)
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This provides a way of obtaining additional solutions to the KdV equation in a straight-
forward manner. First, subtract the difference of eqns (50) from the difference of eqns
(51) to give

0 = 4 (λ2 − λ1) +
1

2

[
(w12 − w1)

2 − (w21 − w2)
2 − (w1 − w0) + (w2 − w0)

2] . (53)

Then, using eqn (52), we obtain after some rearranging,

w12 = w0 −
4 (λ1 − λ2)
w1 − w2

. (54)

Thus, we have arrived at the point where, given three solutions to the mKdV equation
(28): w0, w1 and w2, we can derive a fourth solution to the mKdV equation by purely
algebraic means. Consequently, the mKdV solutions can be used to obtain corresponding
KdV solutions by application of eqn (35).

A Maple program that derives the above result is given in Listing (7).

Listing 7: Maple program for the nonlinear superposition of KdV equation

# KdV Nonlinear Superposition

restart;

alias(w[0]=w[0](x,t)): alias(w[1]=w[1](x,t)):

alias(w[2]=w[2](x,t)):

alias(w[12]=w[12](x,t)):alias(w[21]=w[21](x,t)):

# Define two different x-part auto -Backlund transformations

eqn1:=diff((w[1]+w[0]),x)=2* lambda [1] + (1/2) *(w[1]-w[0]) ^2;

eqn2:=diff((w[2]+w[0]),x)=2* lambda [2] + (1/2) *(w[2]-w[0]) ^2;

# Define two additional different x-part auto -Backlund

# transformations

eqn3:=diff((w[12]+w[1]),x)=2* lambda [2] + (1/2) *(w[12]-w[1]) ^2;

eqn4:=diff((w[21]+w[2]),x)=2* lambda [1] + (1/2) *(w[21]-w[2]) ^2;

# Subtract differece of second BTs from first BTs

eqn5 :=(eqn1 -eqn2) -(eqn3 -eqn4);

# Apply "integrability conditions"

w[21]:=w[12];

# Rearrange to obtain final solution

eqn6:= collect(isolate(eqn5 ,w[12]) ,w[0]);

As an example application of the above, let w0 = 0 and use solutions from eqns (46) and
(48), i.e. w1 = −2k tanh ([k (x− x0 − 4k2t)], w2 = −2k2 coth [k (x− x0 − 4k2t)]; then
eqn (54) yields,

w12 =
−2
(
k1

2 − k22
)

k1 tanh
(
k1
(
x− 4k1

2t
))
− k2 coth

(
k2
(
x− 4k2

2t
)) , (55)

where we have set the arbitrary constant x0 = 0 (recall that λ = −k2). Then finally from
eqn (35) we obtain,

u12 =
2
(
k1

2 − k22
) [
k1

2sech2
(
k1
(
x− 4k1

2t
))

+ k2
2csch2

(
k2
(
x− 4k2

2t
))](

k1 tanh
(
k1
(
x− 4k1

2t
))
− k2 coth

(
k2
(
x− 4k2

2t
)))2 , (56)

which represents a two-soliton solution to the KdV equation. A plot of this solution is
given in Fig (8).

A Maple program that derives the above example and includes an animation, is given in
Listing (8).
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Figure 8: Initial profile at t = −4 of KdV equation 2-soliton solution,

u12 =
2
(
k1

2 − k22
) [
k1

2sech2
(
k1
(
x− 4k1

2t
))

+ k2
2csch2

(
k2
(
x− 4k2

2t
))](

k1 tanh
(
k1
(
x− 4k1

2t
))
− k2 coth

(
k2
(
x− 4k2

2t
)))2 for k1 = 1/2 and k2 = 1.

The solitons move left to right with the taller faster soliton overtaking the shorter slower soliton.

Listing 8: Maple program that generates a 2-soliton solution to the KdV equation by nonlinear superpo-
sition of mKdV equation solutions

# KdV/mKdV Equations , 2-soliton solution - Backlund Transformation

restart;with(PDEtools): with(PolynomialTools):

with(plots):

alias(u=u(x,t)): alias(w=w(x,t)): alias(v=v(x,t)):

# Define KdV and mKdV equations

pde_KdV :=diff(u,t) -6*u*diff(u,x) + diff(u,x,x,x)=0;

pde_mKdV :=diff(v,t) -6*v^2* diff(v,x) + diff(v,x,x,x)=0;

# Wahlquist and Estabrook transformation

pde1 :=(w)->diff(w,x)=2* lambda+w^2/2;

# Define nonlinear superposition

w[12]:=w[0] -4*( lambda [1]- lambda [2])/(w[1]-w[2]);

# Define three mKdV solutions

w[0]:=0;

w[1]:= -2*k[1]* tanh(k[1]*(x-4*k[1]^2*t));

w[2]:= -2*k[2]* coth(k[2]*(x-4*k[2]^2*t));

# Calculate corresponding KdV solutions and test they are correct

sol1:=u= simplify(diff(w[1],x),trig);

sol2:=u=simplify(diff(w[2],x),trig);

pdetest(sol1 ,pde_KdV);

pdetest(sol2 ,pde_KdV);

# Solve for lambda using Wahlquist and Estabrook transformation

eqn1:=pde1(w[1]);

eqn2:=pde1(w[2]);

lambda [1]:= solve(eqn1 ,lambda);

lambda [2]:= solve(eqn2 ,lambda);

# Final solution from nonlinear superposition

eval(w[12]);

sol3:=u=diff(w[12],x);

# Check solution statisfies KdV equation

pdetest(sol3 ,pde_KdV);

# Apply manual simplification and check it is correct

sol3a := u = (2*(k[1]^2 -k[2]^2))*(k[1]^2* sech(k[1]*(x-4*k[1]^2*t))^2+

k[2]^2* csch(k[2]*(x-4*k[2]^2*t))^2)/

(k[1]* tanh(k[1]*(x-4*k[1]^2*t))-

k[2]* coth(k[2]*(x-4*k[2]^2*t)))^2;

testeq(rhs(sol3)=rhs(sol3a));

# Plot results

# ============
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dat :={k[1]=1/2 ,k[2]=1};

u12:=subs(dat ,rhs(sol3)); # Set data values

# Animate solution

animate(u12 ,x=-30..30,t=-4..4,

numpoints =300, frames =50, axes=framed ,

labels =["x","u[12]"] , thickness =3,

title="KdV equation\n2 -soliton solution",

labelfont =[TIMES , ROMAN , 16], axesfont =[TIMES , ROMAN , 16],

titlefont =[TIMES , ROMAN , 16]);

3.3 Three-soliton solution to the KdV equation using nonlinear superposi-
tion

The two-soliton solution presented above can be extended to generate multi-soliton so-
lutions where, for a three-soliton solution, eqn. (54) becomes.

w123 = w1 −
4 (λ2 − λ3)
w12 − w13

. (57)

Or, on expansion,

w123 =
λ1w1(w2 − w3) + λ2w2(w3 − w1) + λ3w3(w1 − w2)

λ1(w2 − w3) + λ2(w3 − w1) + λ3(w1 − w2)
. (58)

For example, if we define the following solutions to the mKdV equation,

w0 =0, (59)

w1 =− 2 tanh
(
k1
(
x− 4k21t

))
, (60)

w2 =− 2 coth
(
k2
(
x− 4k22t

))
, (61)

w3 =− 2 tanh
(
k3
(
x− 4k23t

))
, (62)

then, following the same procedure as for the two soliton solution, we obtain

w12 =
−2
(
k1

2 − k22
)

k1 tanh
(
k1
(
x− 4k1

2t
))
− k2 coth

(
k2
(
x− 4k2

2t
)) , (63)

w13 =
−2
(
k1

2 − k32
)

k1 tanh
(
k1
(
x− 4k1

2t
))
− k3 tanh

(
k3
(
x− 4k3

2t
)) . (64)

and from eqn (57) ,

w123 =
N1

D1

, (65)

where,

N1 =2 tanh
(
4tk1

3 − xk1
)
k1

3 coth
(
4tk2

3 − xk2
)
k2

− 2 tanh
(
4tk1

3 − xk1
)
k1 coth

(
4tk2

3 − xk2
)
k2

3

− 2 tanh
(
4tk1

3 − xk1
)
k1

3 tanh
(
4tk3

3 − xk3
)
k3

+ 2 tanh
(
4tk1

3 − xk1
)
k1 tanh

(
4tk3

3 − xk3
)
k3

3

+ 2k2
3 coth

(
4tk2

3 − xk2
)

tanh
(
4tk3

3 − xk3
)
k3

− 2k2 coth
(
4tk2

3 − xk2
)

tanh
(
4tk3

3 − xk3
)
k3

3 (66)
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and

D1 =− tanh
(
4tk1

3 − xk1
)
k1k2

2 + tanh
(
4tk1

3 − xk1
)
k1k3

2

+ coth
(
4tk2

3 − xk2
)
k2k1

2 − coth
(
4tk2

3 − xk2
)
k2k3

2

− tanh
(
4tk3

3 − xk3
)
k3k1

2 + tanh
(
4tk3

3 − xk3
)
k3k2

2. (67)

The solution to the KdV equation is obtained by application of eqn (35) yielding,

u123 =
N2

D2

, (68)

where,

N2 =2k2
2
[
k1

2 (k1 − k2)2 (k1 + k2)
2 tanh2

(
4tk1

3 − xk1
)

+ 2 tanh
(
4tk3

3 − xk3
)
k1k3 (k2 − k3) (k2 + k3) (k1 − k2) (k1 + k2)

× tanh
(
4tk1

3 − xk1
)

+ k3
2 (k2 − k3)2 (k2 + k3)

2 tanh2
(
4tk3

3 − xk3
)

− (k1 − k3)2 (k1 + k3)
2 (k12 + k3

2 − k22
)]

coth2
(
4tk2

3 − xk2
)

− 4k1 (k1 + k3) (k1 − k3) k2
[(
−k22k1 + k1

3
)

tanh
(
4tk3

3 − xk3
)

× tanh2
(
4tk1

3 − xk1
)

+ k3
(
tanh

(
4tk3

3 − xk3
)
− 1
)

×
(
tanh

(
4tk3

3 − xk3
)

+ 1
)

(k2 − k3) (k2 + k3) tanh
(
4tk1

3 − xk1
)

+
(
−k13 + k2

2k1
)

tanh
(
4tk3

3 − xk3
)]
k3 coth

(
4tk2

3 − xk2
)

+ 2k1
2
[
k3

2 (k1 − k3)2 (k1 + k3)
2 tanh2

(
4tk3

3 − xk3
)

+ (k2 − k3)2 (k2 + k3)
2 (−k22 + k1

2 − k32
)]

tanh2
(
4tk1

3 − xk1
)

− 4k3 tanh
(
4tk3

3 − xk3
)
k2

2k1 (k2 − k3) (k2 + k3) (k1 − k2) (k1 + k2)

× tanh
(
4tk1

3 − xk1
)
− 2k3

2 tanh2
(
4tk3

3 − xk3
)

× (k1 − k2)2 (k1 + k2)
2 (k12 + k2

2 − k32
)

(69)

and

D2 =
[(
−k3k12 + k3k2

2
)

tanh
(
4tk3

3 − xk3
)

+
(
−k22 + k3

2
)

× tanh
(
4tk1

3 − xk1
)
k1 + k2 coth

(
4tk2

3 − xk2
)

(k1 − k3) (k1 + k3)
]2
. (70)

This represents a three-soliton solution to the KdV equation and a plot of this solution
is given in Fig (9).

A Maple program that derives the above result and includes an animation, is given in
Listing (9).

Listing 9: Maple program that generates a 3-soliton solution to the KdV equation by nonlinear superpo-
sition of mKdV equation solutions

# KdV/mKdV Equations , 3-soliton solution - Backlund Transformation

restart;with(PDEtools): with(PolynomialTools):

with(plots):

alias(u=u(x,t)): alias(w=w(x,t)): alias(v=v(x,t)):

# Define KdV and mKdV equations

pde_KdV :=diff(u,t) -6*u*diff(u,x) + diff(u,x,x,x)=0;

pde_mKdV :=diff(v,t) -6*v^2* diff(v,x) + diff(v,x,x,x)=0;

# Wahlquist and Estabrook transformation

pde1 :=(w)->diff(w,x)=2* lambda+w^2/2;

# Define nonlinear superposition

w[123]:=w[1] -4*( lambda [2]- lambda [3])/(w[12]-w[13]);

w[12]:=w[0] -4*( lambda [1]- lambda [2])/(w[1]-w[2]);
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Figure 9: Initial profile at t = −40 of KdV equation 3-soliton solution, eqn. (68). Solitons move left to
right with the taller faster solitons overtaking the shorter slower solitons.

w[13]:=w[0] -4*( lambda [1]- lambda [3])/(w[1]-w[3]);

w[123]:= collect(numer(w[123]) ,{lambda [1], lambda [2], lambda [3]})/

collect(denom(w[123]) ,{lambda [1], lambda [2], lambda [3]});

# Define four mKdV solutions

w[0]:=0;

w[1]:= -2*k[1]* tanh(k[1]*(x-4*k[1]^2*t));

w[2]:= -2*k[2]* coth(k[2]*(x-4*k[2]^2*t));

w[3]:= -2*k[3]* tanh(k[3]*(x-4*k[3]^2*t));

w[12]:= eval(w[12]);

w[13]:= eval(w[13]);

w[123]:= simplify(w[123] , size);

# Calculate corresponding KdV solutions and test they are correct

sol1:=u=simplify(diff(w[1],x),trig);

sol2:=u=simplify(diff(w[2],x),trig);

sol3:=u=simplify(diff(w[3],x),trig);

pdetest(sol1 ,pde_KdV);

pdetest(sol2 ,pde_KdV);

pdetest(sol3 ,pde_KdV);

# Solve for lambda using Wahlquist and Estabrook transformation

eqn1:=pde1(w[1]);

eqn2:=pde1(w[2]);

eqn3:=pde1(w[3]);

lambda [1]:= solve(eqn1 ,lambda);

lambda [2]:= solve(eqn2 ,lambda);

lambda [3]:= solve(eqn3 ,lambda);

w[123]:= eval(w[123]);

sol123 :=u=simplify(diff(w[123],x),size);

# Plot results

# ============

dat :={k[1]=1/2 ,k[2]=3/4 ,k[3]=1};

u123:= simplify(subs(dat ,rhs(sol123)),size); # Set data values

# Animate solution

animate(u123 ,x=-40..40,t=-8..8,

numpoints =300, frames =50, axes=framed ,

labels =["x","u[123]"] , thickness =3,

title="KdV equation\n3 -soliton solution",

labelfont =[TIMES , ROMAN , 16], axesfont =[TIMES , ROMAN , 16],

titlefont =[TIMES , ROMAN , 16]);
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3.4 Nonlinear superposition applied to the sine-Gordon equation

We take a similar approach to that used for the KdV equation and start by rewriting the
x-part of the auto-Bäcklund transformation given in eqns (16) as

(v1 − v0)x = 2λ1 sin

(
v1 + v0

2

)
,

(v2 − v0)x = 2λ2 sin

(
v2 + v0

2

)
,

(71)

where v = v(x, t). Similarly, we construct two additional solutions: v12 from v1 and λ1;
and v21 from v2 and λ2

(v12 − v1)x = 2λ1 sin

(
v12 + v1

2

)
,

(v21 − v2)x = 2λ2 sin

(
v21 + v2

2

)
.

(72)

This provides a way of obtaining additional solutions to the S-G equation in a straight-
forward manner. First, subtract the difference of eqns (71) from the difference of eqns
(72) to give

0 = −2

[
sin

(
v0 − v1

2

)
+ sin

(
v2 − v12

2

)]
λ1+

2

[
sin

(
v0 − v2

2

)
+ sin

(
v1 − v21

2

)]
λ2. (73)

Again, the above Bianchi theorem of permutability states that v12 and v21 in eqns (72)
will be equal, i.e.

v12 = v21. (74)

Then, using eqn (74) and some standard trigonometrical identities 3, we obtain after
some rearranging,

v12 = v0 − 4 arctan

[(
λ1 + λ2
λ1 − λ2

)
tan

(
v1 − v2

4

)]
. (75)

Thus, as for the KdV equation, we have arrived at the point where, given three solutions
to the S-G equation: v0, v1 and v2, we can derive a fourth by purely algebraic means.

A Maple program that derives the above result is given in listing (10).

Listing 10: Maple program that generates a fourth solution to the sine-Gordon equation by nonlinear
superposition of three known solutions

# Sine -Gordon Nonlinear Superposition

restart;

alias(v[0]=v[0](x,t),v[1]=v[1](x,t),v[2]=v[2](x,t),u=u(x,t)):

alias(v[12]=v[12](x,t)):alias(v[21]=v[21](x,t)):

# Define sine -Gordon equation

pde_SG :=diff(u,x,t)=sin(u);

# Define two different x-part auto -Backlund transformations

eqn1:=diff((v[1]+v[0]),x)=2* lambda [1] * sin((v[1]-v[0]) /2);

eqn2:=diff((v[2]+v[0]),x)=2* lambda [2] * sin((v[2]-v[0]) /2);

# Define two additional different x-part auto -Backlund transformations

eqn3:=diff((v[12]+v[1]),x)=2* lambda [2] * sin((v[12]-v[1]) /2);

eqn4:=diff((v[21]+v[2]),x)=2* lambda [1] * sin((v[21]-v[2]) /2);

3Identities used: A) sinα+ sinβ = 2 sin
α+ β

2
cos

α+ β

2
, B) sin (α+ β) = sinα cosβ + cosα sinβ .
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# Subtract differece of second BTs from first BTs

eqn5 :=(eqn1 -eqn2) -(eqn3 -eqn4);

# Apply "integrability condition"

v[21]:=v[12];

# Rearrange

eqn6:= collect(eqn5 ,{ lambda [1], lambda [2]});

# Apply trig identity: sin(A+B)+sin(A-B)=2*sin((A+B)/2))*cos((A-B)/2)

eqn7:= algsubs(sin ( -(1/2)*v[1]+(1/2)*v[0])+sin ( -(1/2)*v[12]+(1/2)*v[2])=

2*sin (( -(1/2)*v[1]+(1/2)*v[0] -(1/2)*v[12]+(1/2)*v[2]) /2)*

cos (( -(1/2)*v[1]+(1/2)*v[0]+(1/2)*v[12] -(1/2)*v[2]) /2),eqn6);

# Apply trig identity: sin(A+B)+sin(A-B)=2*sin((A+B)/2))*cos((A-B)/2)

eqn8:= algsubs(sin ( -(1/2)*v[2]+(1/2)*v[0]) + sin ( -(1/2)*v[12]+(1/2)*v[1])=

2*sin (( -(1/2)*v[2]+(1/2)*v[0] -(1/2)*v[12]+(1/2)*v[1]) /2)*

cos (( -(1/2)*v[2]+(1/2)*v[0]+(1/2)*v[12] -(1/2)*v[1]) /2),eqn7);

# Remove common factor cos (..)

eqn9 :=0=op(3,rhs(factor(eqn8)));

# Apply trig identity: sin(A+B)=sin(A)cos(B)+cos(A)sin(B)

eqn10 := algsubs(sin ( -(1/4)*v[2]+(1/4)*v[0] -(1/4)*v[12]+(1/4)*v[1])=

sin ((1/4)*v[0] -(1/4)*v[12])*cos ( -(1/4)*v[2]+(1/4)*v[1])+

cos ((1/4)*v[0] -(1/4)*v[12])*sin ( -(1/4)*v[2]+(1/4)*v[1]),eqn9);

# Apply trig identity: sin(A+B)=sin(A)cos(B)+cos(A)sin(B)

eqn11 := algsubs(sin ( -(1/4)*v[1]+(1/4)*v[0] -(1/4)*v[12]+(1/4)*v[2])=

sin ((1/4)*v[0] -(1/4)*v[12])*cos ( -(1/4)*v[1]+(1/4)*v[2])+

cos ((1/4)*v[0] -(1/4)*v[12])*sin ( -(1/4)*v[1]+(1/4)*v[2]),eqn10);

# Collect like terms

eqn12 := simplify(collect(eqn11 ,{sin ((1/4)*v[0] -(1/4)*v[12]),

cos ( -(1/4)*v[2]+(1/4)*v[1])}),size);

# Rearrange

eqn13 :=op(1,rhs(eqn12))=-op(2,rhs(eqn12));

# Define common factor

divisor := select(has ,lhs(eqn13),cos) * select(has ,rhs(eqn13),cos);

# Remove common factor

eqn14 := convert(eqn13/divisor ,tan);

# Final solution

isolate(eqn14 , v[12]);

As an example application of the above, let v0 = 0, v1 = arccos
[
2 tanh2 (a1x

2 + t/a1)− 1
]

(peakon soliton) and v2 = 4 arctan [exp (a2x+ t/a2)] (anti-kink soliton); then eqn. (75)
yields the following new solution to the sine-Gordon equation,

v12 = −4 arctan

[
λ1 + λ2
λ1 − λ2

tan

{
1

4
arccos

[
2 tanh2 (a2x+ t/a2)− 1

]
− arctan [exp (a1x+ t/a1)]

}]
. (76)

A plot of this solution is given in Fig (10).

A Maple program that derives the above example and includes an animation, is given in
Listing (11).

Listing 11: Maple program that generates a 2-soliton solution to the sine-Gordon equation by nonlinear
superposition

# Sine -Gordon equation - nonlinear superposition

restart; with(plottools): with(plots):

alias(u=u(x,t)): alias(v=v(x,t)):

# Define sine -Gordon equation

pde_SG :=diff(u,x,t)-sin(u)=0;

# Define S-G nonlinear superposition equation

v[12] := v[0]-4* arctan(tan ( -(1/4)*v[2]+(1/4)*v[1])*

(lambda [2]+ lambda [1])/( lambda [1]- lambda [2]));

# Define three S-G solutions
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Figure 10: Initial profile at t = −200 of sine-Gordon equation 2-soliton solution,

v12 = −4 arctan

[
λ1 + λ2

λ1 − λ2
tan

{
1
4

arccos
[
2 tanh2 (a2x+ t/a2)− 1

]
− arctan [exp (a1x+ t/a1)]

}]
for a1 = 5,

a2 = 4, λ1 = 1 and λ2 = 2. The solution moves from right to left with the peakon overtaking the anti-kink
soliton.

v[0]:=0;

v[1]:= arccos (2* tanh(a2*x+t/a2)^2-1);

v[2]:=4* arctan(exp(a1*x+t/a1));

# Check solutions are correct

pdetest(u=v[1], pde_SG);pdetest(u=v[2], pde_SG);

# Evaluate solution

v[12]:= eval(v[12]);

# Plot results

# ============

dat :={a1=5, a2=4, lambda [1]=1, lambda [2]=2};

zz:=subs(dat ,v[12]);

animate(zz ,x=-15..15,t= -200..200 , numpoints =1000, frames =50,

numpoints =300, frames =50, axes=framed ,

labels =["x","u[12]"] , thickness =3,

title="Sin -Gordon 2-soliton solution\nPeakon overtakes anti -Kink",

labelfont =[TIMES , ROMAN , 16], axesfont =[TIMES , ROMAN , 16],

titlefont =[TIMES , ROMAN , 16]);
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[Bac-80] Bäcklund, A. V. (1880), Zür Theorie der Partiellen Differentialgleichungen
erster Ordnung, Math. Ann., XVII, 285-328.

[Con-08] Conte, R. and M. Musette (2008), The Painlevé Handbook, Springer, Dor-
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