
The Schrödinger Equation: First Steps
Graham W. Griffiths1

City, University of London

oo0oo

Contents

1 Historical 2
1.1 Balmer’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Bohr’s Breakthrough . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Einstein’s Photoelectric Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 De Broglie’s Wave Theory for The Electron . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 The Bohr Model 5

3 The Schrödinger Equation 8
3.1 Time Independent Schrödinger Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 The Born Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2.1 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Degeneracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4 Wavelength of matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Infinite Potential Well 11
4.1 1D Particle in a Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 2D Particle in a Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3 3D Particle in a Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.4 3D Particle in a Box - Spherical Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.4.1 The Angular Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.4.2 The Radial Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Finite Potential Well 27

6 The Quantum Oscillator 32

7 Quantum Tunneling 37

8 The Hydrogen Atom 42
8.1 Hydrogen atom degeneracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Appendix A Classical Harmonic Oscillator - Position Probability Density 50

Appendix B Vector Spaces 51
B.1 Hilbert Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
B.2 Inner Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Appendix C Operators and Commutators 54
C.1 Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
C.2 Commutators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Appendix D Quantum States 56
D.1 Stationary States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Appendix E Transition Between States 57

Appendix F Emission 57
F.1 Spontaneous Emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
F.2 Stimulated Emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Appendix G Quantum Numbers 59

1email: graham@griffiths1.com, web: www.pdecomp.net

Graham W Griffiths 1 26 May 2023, revised 30 January 2024

graham@griffiths1.com
www.pdecomp.net


Appendix H Some Definitions 59

Appendix I Data Related to Quantum Mechanics 60

Appendix J Python Source Code 60

1 Historical

Following Aberty and Silby [Alb-92], we provide here a very brief review of some of the
major breakthroughs that finally lead to the discovery of the Schrödinger equation.

1.1 Balmer’s Law

A major problem for scientists towards the end of the 19th century was that the spectra
of atoms could not be explained by Classical Laws. This was because classical theories
involving positive and negative charges predicted that radiation should be continuous.
But in 1885, Balmer [Bal-85] discovered that the wavelength λ [m] of the lines in the
visible region of the emission spectrum of hydrogen atoms could be expressed by the
following simple expression,

1

λ
= ν̄ = R

(
1

22
− 1

n2
2

)
, (1.1)

where n2 represents an integer greater than 2, ν̄ = wave number [m−1]and R is the
Rydberg constant [Ryd-90] given by,

R =
e4µ

8ϵ20h
3c

[
= 10, 973, 731.6 m−1 for hydrogen

]
, (1.2)

where, e = fundamental unit of charge, h = Planck’s constant, µ is the reduced mass for
the atom and ϵ0 is the permittivity of a vacuum. The reduced mass for an atom with
one electron is given by,

µ =
mnucme

mnuc +me

, (1.3)

where mnuc = mass of nucleous and me =mass of electron.

The success of Balmer’s equation, 1.1, was soon followed by the discovery of additional
lines in the atomic hydrogen spectrum which could be represented by,

ν̄ = R

(
1

n2
1

− 1

n2
2

)
, (1.4)

where n1 also represents an integer and n2 > n1. Further discoveries showed that the
frequencies of the lines of more complicated atoms, with multiple electrons, could also be
represented by the difference between a small set of numbers associated with the atom.
This meant that each atom has a set of energies En called energy levels such that in the
associated line spectrum the line spectrum can be calculated as,

ν̄ =
1

h
(En − Em), (1.5)

where En > Em and h =Planck’s constant. Here we see that E = hν, which is the
same as in Planck’s theory of blackbody radiation, except that in this case it assumed
that atoms can only have certain specific energy levels, and hence only certain spectral
frequencies.
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1.2 Bohr’s Breakthrough

The acceptance of Balmer’s equation resulted in various models of the atom being pro-
posed, built largely upon classical mechanics, but all were found to have unrealistic
characteristics. Most notable was Ernest Rutherford’s model which failed, primarily be-
cause it predicted an orbiting electron would lose energy by emitting electromagnetic
radiation when it would spiral into the nucleus. Then, in 1913 Niels Bohr [Boh-13] broke
with classical mechanics and developed a successful theory for hydrogen-like atoms (that
have one electron). In Bohr’s model, the angular momentum p, of an orbital electron was
assumed to only have integer multiples of a quantum momentum of magnitude ℏ = h/2π.
It also provided a theoretical justification for the Rydberg equation and a justification
for its fundamental physical constants.

To overcome the problems of Rutherford’s atom, Bohr proposed three postulates that
sum up most of his model:

1. The electron is able to revolve in certain stable orbits around the nucleus without
radiating any energy, contrary to what classical electromagnetism suggests. These
stable orbits are called stationary orbits and are attained at certain discrete distances
from the nucleus. The electron cannot have any other orbit in between the discrete
ones.

2. The stationary orbits are attained at distances for which the angular momentum of
the revolving electron is an integer multiple of the reduced Planck constant:

mevr = nℏ, (1.6)

where me = electron mass, , v = velocity, r = radius, n = 1, 2, 3, ... is called the
principal quantum number and ℏ = h/2π. The lowest value of n is 1; this gives the
smallest possible orbital radius of r = 0.0529 nm (= 0.529 Å), known as the Bohr
radius - see appendix 2. Once an electron is in this lowest orbit, it can get no closer
to the nucleus2.

3. Electrons can only gain and lose energy by jumping from one allowed orbit to an-
other, absorbing or emitting electromagnetic radiation with a frequency ν deter-
mined by the energy difference of the levels according to the Planck relation:

∆E = E2 − E1 = hν, (1.7)

where h = Planck’s constant and ν = frequency.

In 1922 Niels Henrik David Bohr was awarded the Nobel Prize in Physics:

for his services in the investigation of the structure of atoms and of the radiation
emanating from them.

However, Bohr’s model assumed that an electron moves in a circular orbit about the
positively charged nucleus; and, whilst this worked for hydrogen and introduced new
useful concepts, it could not be extended successfully to other atoms having more than
one electron.

1.3 Einstein’s Photoelectric Effect

Experiments showed that when light is absorbed by a metal surface it results in an
electron being ejected, and that the kinetic energy of the fasted ejected electron is in-
dependent of the intensity of light. Also, that there is a cutoff frequency below which

2Starting from the angular momentum quantum rule, previously given by Nicholson, Bohr was able to calculate the
energies of the allowed orbits of the hydrogen atom and other hydrogen-like atoms and ions. These orbits are associated
with definite energies and are also called energy shells or energy levels. In these orbits, the electron’s acceleration does not
result in radiation and energy loss. The Bohr model of an atom was based upon Planck’s quantum theory of radiation.
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no electrons are ejected. This is contrary to what would be expected from classical me-
chanics which predicts that the energy absorbed by the surface should be proportional
to the intensity of light. In 1905, Einstein [Ein-05] pointed out that whilst these effects
could not be explained using the classical theory of light, they could be explained if the
energy of light is transferred in particle-like bundles, later named photons3. Thus, as an
electron moves from one energy level up or down to the next, a photon is either absorbed
or emitted by the electron. Einstein assumed that the energy of a photon is given by,

E = hν, (1.8)

where h represents Planck’s constant and ν frequency. Previously, Planck [Pla-00] had
proposed that the emission and absorption of of light in black body radiation is quantized
in units of hν. Einstein extended this work by assuming that the energy of light is
quantized with each photon having energy hν.

In 1921 Albert Einstein was awarded the Nobel Prize in Physics:

for his services to Theoretical Physics, and especially for his discovery of the
law of the photoelectric effect.

Confirmation that radiation consists of packets of energy called photons came in 1923
when Arthur Compton [Com-23] studied X-ray scattering by a graphite target, subse-
quently named the Compton scattering. In 1927 Arthur Holly Compton was awarded the
Nobel Prize in Physics:

“for his discovery of the effect named after him.”

1.4 De Broglie’s Wave Theory for The Electron

Following Balmer’s discovery of eqn(1.1), and that each atom had an associated set
of spectral lines representing energy levels, the scientific community gradually came to
accept the quantization of energy. During this time Einstein had shown, using his special
theory of relativity, that the momentum of a photon is given by p = ϵ/c, from which it
follows that

p =
hν

c
=
h

λ
, (1.9)

where ϵ = the energy of a photon [J] and c = the speed of light [m/s].

Then in 1924 De Broglie4 was the first to develop a wave theory for the behavior of
an electron which he published in his Ph.D. thesis [DeB-24]. He postulated that the
wavelength of any matter obeyed the relationship λ = h/p, where h is Planck’s constant
and p is momentum. Table (2.1) lists some data derived from de Broglie’s ideas. His
thesis also included the hypothesis that a standing wave some how guided the electrons
in the Bohr model of the atom, see Figure(1.1). It is clear that for a circular standing
wave to exist, it must consist of an integer number of wavelengths. This is the reason
that the electron energy is quantized.

De Broglie’s approach successfully solved some simple problems, but his theory did not
adequately explain the behavior of an electron when subjected to different types of ex-
ternal potential fields.

In 1929 Prince Louis-Victor Pierre Raymond de Broglie was awarded the Nobel prize in
Physics:

3A photon consists of a quantum of energy (electromagnetic radiation) and has properties of frequency ν, wavelength
λ and momentum p.

4Full name: Louis-Victor, Pierre, Raymond 7th duc de Broglie, usually shortened to de Broglie.
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“for his discovery of the wave nature of electrons.”

Figure 1.1: Illustration of de Brolie’smatter waves for a hydrogen-like atom, consisting of a single positively
charged proton with a negatively charged electron circling around it. (left) The situation shows an orbital
standing wave electron with energy E5 being struck by a photon with energy ∆E. (right) The photon
has imparted its energy ∆E to the electron. This resulted in it transitioning to a higher orbital level, see
apendix(E). The new energy level is E8 = E5 +∆E, as predicted by Niels Bohr, see Section (1.2). Tables
(2.1) and (2.2) list useful data relating to the hydrogen atom.

Matter waves were first demonstrated in 1927 by George Paget Thomson using a cathode
ray apparatus [Tho-27]. In 1937 Thomson, along with Clinton Joseph Davisson, was
awarded the Nobel Prize in Physics:

“for their experimental discovery of the diffraction of electrons by crystals.”

2 The Bohr Model

Niels Bohr in 1913 formulated a model of hydrogen-like atoms [Boh-13] based on a mixture
of classical mechanics and some quantum mechanical ideas that were just developing.
He postulated that the hydrogen atom consisted of an electron in a circular orbit about
its nucleus which consisted of a single proton, see Figure (8.1). With the proton having
a positive unit charge q1 = +e, and the electron having a negative unit charge q2 = −e,
they were attracted by an electrostatic force due to Coulomb’s law. The Coulomb force
is given by

F = ke
|e2|
r2
, (2.1)

where ke = 1/(4πε0), ε0 = vacuum permittivity, and r represents the orbit radius.

Bohr then equated the electrostatic force with the centripetal force, giving

ke
e2

r2
=
mev

2

r
. (2.2)

Bohr had studied Maxwell’s theory of classical electromagnetism and knew that in a
classical theory, the orbiting electron should radiate energy away and eventually collapse
into the nucleus. He was also aware of the Planck-Einstein relation E = hν = h/λ, where
E represents the quantized energy of a photon, ν frequency and λ wavelength. He then
postulated that angular momentum L, must also be quantized, such that L = mevr = nℏ,
where n represents the principal quantum number. Substituting this relationship into
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equation 2.2 and rearranging we obtain,

r =
4πε0(nℏ)2

mee2
. (2.3)

It therefore follows that
rn = n2r1. (2.4)

Substituting values from appendix I and setting n = 1 (the ground state), we get

a0 =
4π × 8.85418782× 10−12 × (1× 1.054571817× 10−34)2

9.1093837× 10−31 × (1.602176634× 10−19)2
,

∴ a0 = 0.052918 [nm] = 0.52918 [Å],

(2.5)

where a0 is the standard symbol used for ground state radius. This value of a0 was later
confirmed to be very close to the most probable ground state radius, as predicted by the
hydrogen atom solution to Schrödinger’s equation. The Bohr radius including the effect
of reduced mass in the hydrogen atom is given by

a∗0 =
me

µ
a0, (2.6)

where µ = memp/(me +mp) is the reduced mass of the electron-proton system (with mp

being the mass of proton). The use of reduced mass is a generalization of the classical
two-body problem when the mass of the orbiting body is not negligible compared to the
mass of the central body. In this case, the reduced mass of the electron-proton system
is slightly less than the electron mass, so the reduced Bohr radius is slightly larger than
the Bohr radius, i.e. a∗0 ≈ 1.00054 a0 ≈ 0.052947 [nm].

From eqns (2.1) and (2.2) we can obtain the electron’s orbital velocity now that r is
known, i.e.

v =

√
|F | r
me

=

√
e2

4πε0mer
=
kee

2

nℏ
; (2.7)

from which it follows that
vn =

v1
n
. (2.8)

In addition, from eqns (2.2) and (2.7) we can determine the energy E of the electron
which is equal to the sum of its kinetic and potential energies, i.e.

KE =
1

2
mev

2 =
1

2

1

4πε0

e2

r
,

PE =

∫ ∞

r

ke
|e2|
r2

dr = − 1

4πε0

e2

r
,

∴ E = KE + PE = − 1

8πε0

e2

r
.

(2.9)

It therefore follows from eqns. (2.3) and (2.4) that

En =
E1

n2
.. (2.10)

Or, in terms of fundamental constants

En = −

[
m

2ℏ2

(
e2

4πε0

)2
]

1

n2
, n = 1, 2, 3, . . . . (2.11)
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Table (2.1) lists Bohr electron radii, velocities, energies, wavelengths and frequencies for
various principal quantum numbers. Hydrogen atom energy levels are also plotted in
Figure (2.1).

Figure 2.1: Hydrogen atom energy levels.

When an electron in an atom moves from a higher energy level orbital to a lower one, a
photon is emitted with energy ∆E = hc/λ. Similarly, when an electron absorbs a photon
it moves from a lower energy level orbital to a higher one, gaining energy ∆E = hc/λ..
Thus, from Section (1.4) we have

∆E = Ej − Ei = Ephoton =
hc

λ
= hν, Ej > Ei, (2.12)

where h is Planck’s constant, c is the speed of light [m/s], λ represents wavelength [m]
and ν represents frequency [Hz]. The hydrogen atom can emit different wavelengths of
light ν, depending on the initial and final energy levels of the electron. These are known
collectively as spectral emission lines, see Table (2.2).This phenomena are described by
the Rydberg equation (1.1), which was confirmed by Bohr. Bohr’s derivation of the
Rydberg constant, see Section (1.1), as well as the excellent agreement of Bohr’s equation
with experimentally observed hydrogen spectral lines, and also the successful theoretical
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prediction of other lines not yet observed, was the major reason that his model was
quickly accepted by the physics community.

Table 2.1: Some Bohr Electron Orbit Data for the Hydrogen Atom.

Radius Velocity Energy Wavelength Frequency

n rn [m] vn [m/s] En [J] En [eV] λn [m] νn [s−1]

1 5.292E-11 2.188E+06 -2.180E-18 -13.6068 3.3242E-10 3.2900E+15 †
2 2.117E-10 1.094E+06 -5.450E-19 -3.4017 6.6484E-10 8.2251E+14
3 4.763E-10 7.292E+05 -2.422E-19 -1.5119 9.9745E-10 3.6553E+14
4 8.467E-10 5.469E+05 -1.362E-19 -0.8504 1.3299E-09 2.0555E+14
5 1.323E-09 4.375E+05 -8.719E-20 -0.5443 1.6625E-09 1.3159E+14
6 1.905E-09 3.646E+05 -6.055E-20 -0.3780 1.9949E-09 9.1381E+13
∞ ∞ 0 0 0 - - ‡

† ground state, ‡ ionized state (free electron)

Table 2.2: Some Photon Transition Energies, Wavelengths and Frequencies for the Hydrogen Atom.

Transition Ephoton Wavelength, λ Frequency, ν

∆E [J] [m] [Hz]

E2 − E1 1.6349E-18 1.21502E-07 2.46738E+15
E3 − E2 3.0276E-19 6.56112E-07 4.56922E+14
E4 − E3 1.0597E-19 1.87461E-06 1.59923E+14
E5 − E4 4.9047E-20 4.05008E-06 7.40214E+13

The Bohr model of the hydrogen atom, consisting of an electron orbiting the nucleus
(proton), provides a useful conceptual picture. However, it must be appreciated that
these orbits do not conform to reality - the Bohr radii actually represent the most probable
values as determined from the associated wave function solutions to the Schrödinger
equation, see Section (8).

Subsequently, de Broglie extended Bohr’s idea into a wave theory of matter [DeB-24], and
Schrödinger developed the ideas further [Sch-26], to include his famous equation which
still forms the theoretical basis of quantum mechanics.

3 The Schrödinger Equation

The partial success of de Broglie’s wave theory led Erwin Schrödinger to investigate
alternatives and, ultimately, to derive a wave function solution to describe the electron
that, crucially, conserved energy [Sch-26]. He then systematically applied his equation,
the so called Schrödinger Equation (3.1), to problems involving different potentials ap-
plied to the electron, and the solutions were subsequently confirmed experimentally. The
time dependent Schrödinger equation, shown below, is an evolutionary partial differen-
tial equation (PDE) that describes the behaviour of ψ, the wave function of Quantum
Mechanics,

iℏ
∂

∂t
Ψ(t, x) =

[
− ℏ2

2m

∂2

∂x2
+ V (x)

]
Ψ(t, x),

0 < t ≤ ∞, x ∈ Rs, s ∈ {1, 2, 3};
(3.1)

where ℏ = h/2π, the reduced Planck constant, also known as the Dirac constant5, m =
mass of particle and V (x) =potential.

5Planck’s constant, h = 6.62607015× 10−34 [m2kg/s].
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The wave function describes the quantum state of an isolated quantum system. It is a
fundamental postulate of QuantumMechanics [Lib-22, McQ-97] i.e., it cannot be formally
derived from first principles. It is the basis for our current understanding of the electron.

The above Schrödinger’s equation can also be written as:

iℏ
d

dt
|ψ(t)⟩ = Ĥ |ψ(t)⟩ , (3.2)

or
H |ψ(t)⟩ = E |ψ(t)⟩ , (3.3)

where H represents the Hamiltonian, E =the energy of the particle and |ψ(t)⟩ is the
Dirac notation for quantum state. Care has to be taken when manipulating H, also
written as Ĥ, as it is a mathematical operator and does not commute, i.e. order of
operation is important. These forms are discussed in Appendices (B.2) and (C).

In 1933 Erwin Schrödinger, along with Paul Adrien Maurice Dirac, was awarded the
Nobel Prize in Physics:

“for the discovery of new productive forms of atomic theory.”

3.1 Time Independent Schrödinger Equation

For the situation where the solution is constant over time, we have the time independent
Schrödinger equation which is defined as,

− ℏ2

2m

d2ψ

dx2
+ V ψ = Eψ, (3.4)

with symbols as previously defined. In this form the wave function ψ represents stationary
states, and is not dependent on time only upon its location.

The first term on the left hand side of eqn(3.4) represents kinetic energy of the particle and
the second term represents potential energy, due to its location within its environment.
The right hand term represents total energy. So we can consider this equation to be
equivalent to:

kinetic energy + potential energy = total energy

where the total energy does not change with time, t.

3.2 The Born Interpretation

Schrödinger could not come to a conclusion about what the wave function ψ actually
represented. It took Max Born [Bor-26] to interpret ψ; and he concluded that it could
be used to calculate a measurable quantity.

Whilst the wave function Ψ does not actually represent a real measurable quantity, Born
postulated that when multiplied by its complex conjugate Ψ∗, it represented a probability
density function, ρ, for the particle’s position. This proved to be correct and has so
far passed all experimental tests. Consequently, this is now referred to as the Born
Interpretation.

It therefore follows that,

ρ(x) = Ψ∗Ψ = |Ψ|2 , (3.5)

which represents the probability density function ρ(x), for a particle to be located in
δx ⊂ R.
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In 1954 Max Born was awarded the Nobel Prize in Physics:

“for his fundamental research in quantum mechanics, especially for his statis-
tical interpretation of the wavefunction.”

3.2.1 Normalization

From eqn(3.5), probability theory dictates that we must have∫
Ω

ρ(x) dx =

∫
Ω

|Ψ|2 dx = 1, x = x(x, y, z) , (3.6)

where Ω represent the domain within which it is feasible for the particle to be located. It
is this property that provides a key to unlocking a physical solution to the Schrödinger
equation. This calculation is referred to as normalization.

There are some important practical restrictions on wave function:

• Ψ must be square integral

•
∫ ∞

−∞
Ψ dx must be finite

• Ψ → 0 as x→ ±∞
Also, if Ψ is normalizable and solves the time dependent Schrödinger equation, then AΨ
will also solve the same time dependent Schrödinger equation, where A is a constant.
This is because the A’s will all cancel when AΨ is substituted into eqn(3.1). Similarly, if
Aψ solves the time independent Schrödinger equation then Aψ will also solve the same
time independent Schrödinger equation. Again, because the A’s will all cancel when Aψ
is substituted into eqn(3.4).

We now need to look at time evolution of ρ(x), and we do this by investigating its time
derivative, which according to eqn. (3.6) should equal zero. Consider

∂

∂t

∫ ∞

−∞
|Ψ|2 dx =

∂

∂t

∫ ∞

−∞
Ψ∗Ψdx. (3.7)

Bringing the time derivative under the integral sign and applying the product rule, we
obtain ∫ ∞

−∞

∂

∂t
(Ψ∗Ψ)dx =

∫ ∞

−∞

(
∂Ψ∗

∂t
Ψ+Ψ∗∂Ψ

∂t

)
dx. (3.8)

But from eqn. (3.1) we have

∂

∂t
Ψ(t, x) =

∫ ∞

−∞

[
iℏ
2m

∂2Ψ

∂x2
− i

V

ℏ
Ψ

]
dx. (3.9)

So, eqn. (3.7) becomes

∂

∂t

∫ ∞

−∞
|Ψ|2 dx =

∫ ∞

−∞

iℏ
2m

(
Ψ∗∂

2Ψ

∂x2
− ∂2Ψ∗

∂x2
Ψ

)
dx, (3.10)

where terms containing the potential V have canceled. We note that the right hand side
of eqn. (3.10) can be evaluated so that we have,

iℏ
2m

∫ ∞

−∞

∂

∂x

(
Ψ∗∂Ψ

∂x
− ∂Ψ∗

∂x
Ψ

)
dx =

iℏ
2m

(
Ψ∗∂Ψ

∂x
− ∂Ψ∗

∂x
Ψ

)∣∣∣∣∞
−∞

. (3.11)
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But, if Ψ is normalizable, from the above we have Ψ → 0 as x → ±∞. So, finally, we
end up with

∂

∂t

∫ ∞

−∞
|Ψ(x, t)|2 dx = 0, and ∴

∫ ∞

−∞
|Ψ(x, t)|2 dx = constant. (3.12)

This analysis has shown that 1) the constant A above can be chosen to ensure that eqn.
(3.6) is true, and 2) that time evolution does not affect normalization.

3.3 Degeneracy

An orbital energy level of a quantum mechanical system is said to be degenerate if it
corresponds to two or more different measurable states of a quantum system [Wik-22].
Or, alternatively, two or more different states of a quantum mechanical system are said
to be degenerate if they give the same value of energy upon measurement. The number of
different states corresponding to a particular orbital energy level is known as the degree
of degeneracy of the level.

See Section (8.1) for how the possible number of degeneracy levels is calculated.

3.4 Wavelength of matter

De Broglie postulated in 1924 that the wavelength of any matter obeyed the relationship
λ = h/p, where h is Planck’s constant and p is momentum. This is now accepted - see
Section (1.4). However, the wave properties of matter are only observable for very small
objects.

4 Infinite Potential Well

4.1 1D Particle in a Box

Figure 4.1: The infinite square well potential.

Consider the time dependent Schrödinger equation (3.1) but in one dimension, and with
potential defined as,

V (x) =

{
0, if 0 ≤ x ≤ L,

∞, otherwise.
(4.1)

See Figure (4.1).

We now postulate a separable solution of the form,

Ψ(t, x) = f(t)ψ(x), (4.2)

so that on substituting into the Shrödinger equation we obtain

∂f(t)ψ(x)

∂t
=
∂2f(t)ψ(x)

∂ψ(x)2
+ V (x)f(t)ψ(x). (4.3)
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Dividing through by f(t)ψ(x) and rearranging, we obtain

iℏ
∂f(t)

∂t

1

f(t)
=

(
− ℏ2

2m

∂2ψ(x)

∂x2
+ V (x)

)
1

ψ(x)
. (4.4)

Now, because f(t) is a function of t only, and ψ(x) is a function of x only, both sides of
eqn(4.4) must be equal to a constant (to be evaluated), which we call E. This results in
two separate ordinary differential equations equations,

iℏ
df(t)

dt
= Ef(t). (4.5)

and

− ℏ2

2m

d2ψ(x)

dx2
+ V (x)ψ(x) = Eψ(x). (4.6)

Eqn(4.5) can be integrated directly to give,

f(t) = exp(−iEt/ℏ), (4.7)

from which we obtain
Ψ(t, x) = exp(−iEt/ℏ)ψ(0, x) (4.8)

where ψ(0, x) = ψ(x).

We now consider a zero potential situation in the box i.e., V (x) = 0 where 0 ≤ x ≤ L,
and eqn (4.6) reduces to,

− ℏ2

2m

d2ψ(x)

dx2
= Eψ(x). (4.9)

Outside the box where 0 > x > L we assume that V (x) = ∞, which implies the ψ = 0.
This is because we have

d2ψ(x)

dx2
+

2m

ℏ2
(E − V (x))ψ(x) = 0; (4.10)

so that when V (x) = ∞, it follows that

ψ =
1

∞
d2ψ(x)

dx2
= 0. (4.11)

The standard solution to eqn(4.9) where we impose zero boundary conditions is [Han-97],

ψ(x) =


A cosh(

√
2m|E|x/ℏ) +B sinh(

√
2m|E|x/ℏ), ifE < 0;

A+Bx, ifE = 0;

A cos(
√
2mE x/ℏ) +B sin(

√
2mE x/ℏ), ifE > 0;

(4.12)

where A and B are constants.

For positive energy E > 0 and boundary conditions ψ(0) = ψ(L) = 0, we see that for

the cos term A must be equal to zero. For the sin term we must have
√
2mE x/ℏ = nπ,

which on rearranging yields the following expression for E,

E = En =
n2π2ℏ2

2mL2

(
=

n2h2

8mL2

)
, (4.13)

where n ∈ N. Thus, we see that the permitted energies, the so called eigen energies,
depend upon the integer, n. As indicated in section (1.3), a particle can move between
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different energy levels En when it is interacting with its environment. If a particle moves
from say, a lower energy level to the next higher energy level, it has to absorb an amount
of energy ∆E = En −En−1 from an external source. It can absorb a photon with energy
hν = ∆E, or it can receive the required energy from another particle in a collision. If
the particle moves from a higher energy level to say, the next lower energy level, it has to
release an amount of energy ∆E = En −En−1 to the environment. This can be achieved
by emitting a photon of energy hν = ∆E, e.g.

∆E = En − En−1 =
(
n2 − (n− 1)2

)( h2

8mL2

)
. (4.14)

The frequency ν and wavelength λ of the photon can then be obtained using eqns (2.12)
and (1.9).

Some energy levels are listed in Table(4.1), where we have used a value for the mass of
the electron, m = 9.1093837× 10−31 [kg].

Table 4.1: Energy Levels for an electron in a 1D box of length, L = 10 [nm]. Note: 1 [J] = 6.242 × 1018

[eV].

Energy

n En [J] En [eV]

16 1.5423E-19 9.6271E-01
15 1.3556E-19 8.4613E-01
14 1.1808E-19 7.3708E-01
13 1.0182E-19 6.3554E-01
12 8.6755E-20 5.4153E-01
11 7.2898E-20 4.5503E-01
10 6.0247E-20 3.7606E-01
9 4.8800E-20 3.0461E-01
8 3.8558E-20 2.4068E-01
7 2.9521E-20 1.8427E-01
6 2.1689E-20 1.3538E-01
5 1.5062E-20 9.4015E-02
4 9.6395E-21 6.0170E-02
3 5.4222E-21 3.3845E-02
2 2.4099E-21 1.5042E-02
1 6.0247E-22 3.7606E-03

With the energy levels known, the third equation of eqns(4.12) reduces to

ψ(x) = B sin(nπx/L). (4.15)

To find a value for B we invoke the normalization condition of eqn(3.6), from which we
obtain ∫ L

0

|B|2 sin2
(nπx
L

)
dx =

L

2
|B|2 = 1 (4.16)

and

B =

√
2

L
. (4.17)

∴ ψn(x) =

√
2

L
sin
(nπx
L

)
. (4.18)

Equation (4.18) represents the eigenfunctions of the Schödinger equation for the 1D
potential well that also satisfy the boundary conditions.
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The ground state or zero-point energy occurs when n = 1 in eqn(4.13) which represents
the stationary state of lowest energy. For any n > 1, this represents an excited state
where the energy is greater than the ground state.

From eqn(3.5) it should be noted that

Ψ∗Ψ = |Ψ|2 = ψ(x)∗ψ(x) = |ψ(x)|2. (4.19)

This is because the complex exponential term of eqn(4.8) cancels with its complex con-
jugate, and the time component disappears. It is only true for ”separable solutions”.

We can now combine the temporal and spatial solutions, eqns (4.7) and (4.18), to obtain
the following time dependent separable solution,

Ψn = exp

(
−iEnt

ℏ

)√
2

L
sin
(nπx
L

)
(4.20)

or, equivalently

Ψn = exp

(
−i n

2π2ℏ t
2mL2

)√
2

L
sin
(nπx
L

)
. (4.21)

Example plots of 1D wave functions ψ, and probability density functions ρ, are shown in
Fig (4.2).

Figure 4.2: Example showing solutions to the Schödinger equation for a particle in a 1D box of length
L = 10 [nm]. Plots shown superimposed on energy level lines - ψ and ρ are not to scale.

4.2 2D Particle in a Box

The same approach used for the 1D box can be used for a 2D box.

Thus we have a zero potential inside the box i.e., where V (x, y) = 0, 0 ≤ x, y ≤ L, and
an infinite potential outside the box i.e., where V (x, y) = ∞, 0 > x, y > L. We now seek
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a separable solution by separating the temporal and spatial portions of the wavefunction
i.e., Ψ(t, x, y) = f(t)ψ(x, y); and, as for the 1D case, the time varying part becomes

f(t) = exp(−iEt/ℏ), (4.22)

from which we obtain
Ψ(t, x, y) = exp(−iEt/ℏ)ψ(0, x, y) (4.23)

where ψ(0, x, y) = ψ(x, y).

This enables us to recover the time-independent Schrödinger equation, which therefore
becomes

− ℏ2

2m

(
∂2ψ(x, y)

∂x2
+
∂2ψ(x, y)

∂y2

)
= Eψ(x, y). (4.24)

We can again seek a separable solution by assuming that,

ψ(x, y) = X(x)Y (y). (4.25)

Also that the energy term consists of individual energies, one for each dimension i.e.,

E = Ex + Ey. (4.26)

This enables us to split eqn(4.24) into the following two separate ordinary differential
equations

− ℏ2

2m

d2X

dx2
= ExX;

− ℏ2

2m

d2Y

dx2
= EyY ;

(4.27)

These equations are similar to the 1D box problem eqn(4.9) and have the same solutions
i.e.,

X(x) = Bx sin

(√
2m|Ex|x

ℏ

)
;

Y (y) = By sin

(√
2m|Ey| y

ℏ

)
.

(4.28)

And on imposing the zero boundary conditions, as for the 1D case,

sin

(√
2m|Ex|x = Lx

ℏ

)
= sin(nxπ) = 0

sin

(√
2m|Ey| y = Ly

ℏ

)
= sin(nyπ) = 0.

(4.29)

the energies Ex and Ey become,

Enx =
n2
xπ

2ℏ2

2mL2
x

, Eny =
n2
yπ

2ℏ2

2mL2
y

, (4.30)

where nx ∈ N, ny ∈ N.

Graham W Griffiths 15 26 May 2023, revised 30 January 2024



Thus, the permitted energies, the so called eigen energies, depend upon the two integers,
nx, ny, such that

Enx,ny =
π2ℏ2

2m

(
n2
x

L2
x

+
n2
y

L2
y

)
. (4.31)

The ground state or zero-point energy occurs when nx = 1 and ny = 1 in eqn(4.31),
which represents the stationary state of lowest energy. For any nx > 1 or ny > 1, this
represents an excited state where the energy is greater than the ground state.

From eqns (4.25), (4.28) and (4.30) we obtain,

ψ(x, y) = U sin

(
nxπx

Lx

)
sin

(
nyπy

Ly

)
, (4.32)

where U = BxBy.

To find a value for U we invoke the normalization condition of eqn(3.6), from which we
obtain

U2

∫ Lx

0

sin2

(
nxπx

Lx

)
dx

∫ Ly

0

sin2

(
nyπy

Ly

)
dy = |U |2Lx

2

Ly

2
= 1 (4.33)

and

U =

√
4

LxLy

. (4.34)

∴ ψnx,ny(x, y) =

√
4

LxLy

sin

(
nxπx

Lx

)
sin

(
nyπy

Ly

)
. (4.35)

Equation (4.35) represents the eigenfunctions of the Schödinger equation for the 2D
potential well that also satisfy the boundary conditions.

4.3 3D Particle in a Box

The same approach used for the 1D box can be used for a 3D box.

Thus we have a zero potential inside the box i.e., where V (x, y, z) = 0, 0 ≥ x, y, z ≤ L,
and an infinite potential outside the box i.e., where V (x, y, z) = ∞, 0 ≤ x, y, z ≥ L.

We now seek a separable solution by separating the temporal and spatial portions of the
wavefunction i.e., Ψ(t, x, y, z) = f(t)ψ(x, y, z); and, as for the 1D case, the time varying
part becomes

f(t) = exp(−iEt/ℏ), (4.36)

from which we obtain

Ψ(t, x, y, z) = exp(−iEt/ℏ)ψ(0, x, y, z) (4.37)

where ψ(0, x, y, z) = ψ(x, y, z).

This enables us to recover the time-independent Schrödinger equation, which therefore
becomes

− ℏ2

2m

(
∂2ψ(x, y, z)

∂x2
+
∂2ψ(x, y, z)

∂y2
+
∂2ψ(x, y, z)

∂z2

)
= Eψ(x, y, z). (4.38)

We can again seek a separable solution by assuming that,

ψ(x, y, z) = X(x)Y (y)Z(z). (4.39)
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Also that the energy term consists of individual energies, one for each dimension i.e.,

E = Ex + Ey + Ez. (4.40)

This enables us to split eqn(4.38) into the following three separate equations

− ℏ2

2m

∂2X

∂x2
= ExX;

− ℏ2

2m

∂2Y

∂x2
= EyY ;

− ℏ2

2m

∂2Z

∂x2
= EzZ;

(4.41)

These equations are similar to the 1D box problem eqn(4.9) and have the same solutions
i.e.,

X(x) = Bx sin

(√
2m|Ex|x

ℏ

)
;

Y (y) = By sin

(√
2m|Ey| y

ℏ

)
;

Z(z) = Bz sin

(√
2m|Ez| z

ℏ

)
;

(4.42)

And on imposing the zero boundary conditions, as for the 1D and 2D cases, the energies
Ex, Ey and Ez become,

Enx =
n2
xπ

2ℏ2

2mL2
x

, Eny =
n2
yπ

2ℏ2

2mL2
y

, Enz =
n2
zπ

2ℏ2

2mL2
z

, (4.43)

where nx ∈ N, ny ∈ N, nz ∈ N.
Thus, the permitted energies, the so called eigen energies, depend upon the three integers,
nx, ny, nz, such that

Enx,ny ,nz =
π2ℏ2

2m

(
n2
x

L2
x

+
n2
y

L2
y

+
n2
z

L2
z

)
, (4.44)

The ground state or zero-point energy occurs when nx = 1, ny = 1 and nz = 1 in
eqn(4.44), which represents the stationary state of lowest energy. For any nx > 1, ny > 1
or nz > 1, this represents an excited state where the energy is greater than the ground
state.

From eqns (4.39), (4.42) and (4.43) we obtain,

ψ(x, y, z) = U sin

(
nxπx

Lx

)
sin

(
nyπy

Ly

)
sin

(
nzπz

Lz

)
. (4.45)

where U = BxByBz.

To find a value for U we invoke the normalization condition of eqn(3.6), from which we
obtain

U2

∫ Lx

0

sin2

(
nxπx

Lx

)
dx

∫ Ly

0

sin2

(
nyπy

Ly

)
dy

∫ Lz

−0

sin2

(
nzπz

Lz

)
dz = |U |2Lx

2

Ly

2

Lz

2
= 1

(4.46)
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and

U =

√
8

LxLyLz

. (4.47)

∴ ψnx,ny ,nz(x, y, z) =

√
8

LxLyLz

sin

(
nxπx

Lx

)
sin

(
nyπy

Ly

)
sin

(
nzπz

Lz

)
. (4.48)

Equation (4.48) represents the wave functions of the Schödinger equation for the 3D
potential well that also satisfy the boundary conditions.

Example plots are shown in Figures (4.3) and (4.4).

Figure 4.3: Examples showing wave function solutions ψnxnynz to the Schödinger equation for a particle
in a 3D potential well having sides of length Lx = 10[nm], Ly = 10[nm], Lz = 10[nm]. Plots were generated
in python using the mayavi package, and include 3D isosurfaces of the solution.

Figure 4.4: Examples showing probability density function solutions ρ = |ψnxnynz |2 to the Schödinger
equation for a particle in a 3D potential well having sides of length Lx = 10[nm], Ly = 10[nm], Lz = 10[nm].
Plots were generated in python using the mayavi package, and include 3D isosurfaces of the solution.

4.4 3D Particle in a Box - Spherical Coordinates

We consider now the time dependent Schrödinger equation in a 3D symmetrical situation
which, following [Gri-95], can be written as.

iℏ
∂Ψ

∂t
= − ℏ2

2m
∇2Ψ+ VΨ, (4.49)

where Ψ = Ψ(t, r) and V = V (r), r = (r, θ, ϕ) with other symbols as previously defined.
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Figure 4.5: Spherical coordinates (r, θ, ϕ), as commonly defined in physics applications, with variables
denoted: radial distance r, polar angle θ, and azimuthal angle ϕ. Source: adapted from wikipedia.

The Laplacian in spherical coordinates for Ψ = Ψ(r, θ, ϕ), is given by

∇2Ψ =
1

r2
∂

∂r

(
r2
∂Ψ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂Ψ

∂θ

)
+

1

r2 sin2 θ

∂2Ψ

∂ϕ2
. (4.50)

The same approach used for the 1D box can be used for a 3D box in polar coordinates.
This box has a radius, r = a. Thus we have a zero potential inside the box i.e., where
V (r, θ, ϕ) = 0, with radial coordinate r ≤ a, polar (colatitudinal) coordinate 0 ≥ θ ≤ π,
azimuthal (longitudinal) coordinate 0 ≥ 2ϕ ≤ π and an infinite potential outside the box
i.e., where V (r, θ, ϕ) = ∞, r > r0, see Figure (4.5). NOTE: In the python programming
language, used here for generating plots, θ and ϕ are as commonly defined in physics
texts. However, they are interchanged from that shown in most mathematical texts.

We now seek a separable solution by separating the temporal and spatial portions of the
wavefunction i.e., Ψ(t, r, θ, ϕ) = f(t)ψ(r, θ, ϕ); and, as for the 1D case, the time varying
part becomes

f(t) = exp(−iEt/ℏ), (4.51)

from which we obtain

Ψ(t, x, y, z) = exp(−iEt/ℏ), ψ(0, r, θ, ϕ) (4.52)

where ψ(0, r, θ, ϕ) = ψ(r, θ, ϕ).

This enables us to recover the time-independent Schrödinger equation, which therefore
becomes

− ℏ2

2m

(
1

r2
∂

∂r

(
r2
∂ψ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

r2 sin2 θ

∂2ψ

∂ϕ2

)
− V (r) = Eψ. (4.53)

We can again seek a separable solution by assuming that,

ψ(r, θ, ϕ) = R(r)Y (θ, ϕ). (4.54)

Also that the energy term is only associated with the radial dimension r, due to rotational
symmetry in θ and ϕ i.e.,
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On substituting ψ = R(r)Y (θ, ϕ) into eqn (4.53) and rearranging, we obtain the following
ordinary differential equation,{

1

R

d

dr

(
r2
dR

dr

)
− 2mr2

ℏ2
[V (r)− E]

}
+

1

Y

{
1

sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+

1

sin2 θ

∂2Y

∂ϕ2

}
= 0.

(4.55)

Equation (4.55) consists of two parts; a radial part that depends only on r and an
angular part that depends only on θ and ϕ. This means that each part must be equal to
a constant, which enables us to split this equation into the following two separate radial
and angular equations,

1

R

d

dr

(
r2
dR

dr

)
− 2mr2

ℏ2
[V (r)− E] = ℓ(ℓ+ 1);

1

Y

{
1

sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+

1

sin2 θ

∂2Y

∂ϕ2

}
= −ℓ(ℓ+ 1);

(4.56)

where the separable constant ℓ(ℓ − 1) has been chosen to aid later calculations. The
parameter ℓ is known as the angular momentum quantum number (or azimuthal quantum
number), with possible values of 0, 1, 2, 3, . . .

4.4.1 The Angular Equation

On multiplying the second of eqns (4.56) through by Y sin2 θ we obtain,

sin θ
∂

∂θ

(
sin θ

∂Y

∂θ

)
+
∂2Y

∂ϕ2
= −ℓ(ℓ+ 1)Y sin2 θ. (4.57)

This equation is again in a form that appears suitable for a separable solution approach,
and we try,

Y (θ, ϕ) = T (θ)P (ϕ). (4.58)

Rearranging eqn (4.57) yields,{
1

Y

[
sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)]
+ ℓ(ℓ+ 1)Y sin2 θ

}
+
∂2Y

∂ϕ2
= 0, (4.59)

The first term of this equation is a function of only θ and the second only a function of
ϕ. This means that each term must be equal to a constant, m, known as the magnetic
quantum number, with values ranging from −ℓ to ℓ. It should not be confused with the
symbol for mass, m.

Substituting eqn (4.58) into eqn (4.59) and rearranging yields two separate ordinary
differential equations,

1

T

[
sin θ

∂

∂θ

(
sin θ

∂T

∂θ

)]
+ ℓ(ℓ+ 1) sin2 θ = m2;

1

P

∂2P

∂ϕ2
= −m2.

(4.60)

The solution to the second of eqns. (4.60) is simpler and represented by

P (ϕ) = eimϕ, m ∈ Z. (4.61)
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Normally, this equation would include a leading constant, but to simplify matters we will
subsume it into the solution for T (θ). Also, because eqn. (4.61) represents a many-one
relationship with a period of 2π, it follows that the solution must be written as,

P (ϕ) = eim(ϕ+2π), m ∈ Z. (4.62)

The solution to the first of eqns. (4.60) is more complex and represented by

T (θ) = APm
ℓ (cos θ), ℓ ∈ N, m ∈ Z, |m| ≤ ℓ, (4.63)

where A is a constant to be determined. There are other mathematical solutions to this
equation, but they are physically unacceptable because they blow up at θ = 0 and/or
θ = π, and do not yield wave functions that can be normalized.

In eqn. (4.63) Pm
ℓ is the associated Legendre function, defined by

Pm
ℓ (x) = (1− x2)|m|/2

(
d

dx

)|m|

Pℓ(x), (4.64)

and Pℓ(x) is the ℓth Legendre polynomial. However, for many purposes it will be more
convenient to define Pℓ(x) by the Rodrigues formula,

Pℓ(x) =
1

2ℓℓ!

(
d

dx

)ℓ

(x2 − 1)ℓ. (4.65)

Some associated Legendre functions of cos θ are listed in Table Notice that ℓ must be a

Table 4.2: Some associated Legendre functions, Pm
ℓ (cos θ) Note: Pm

ℓ = 0 for |m| > ℓ.

P 1
1 = sin θ

P 3
3 = 15 sin θ(1− cos2 θ)

P 0
1 = cos θ

P 2
3 = 15 sin2 θ cos θ

P 2
2 = 3 sin2 θ

P 1
3 =

3

2
sin θ(5 cos2 θ − 1)

P 1
2 = 3 sin θ cos θ

P 0
3 =

1

2
(cos3 θ − 3 cos θ)

P 0
2 =

1

2
(3 cos2 θ − 1)

non-negative integer for the Rodrigues formula to make any sense; moreover, if |m| > ℓ,
then eqn. (4.64) says Pm

ℓ = 0. For any given ℓ, then, there are (2ℓ + 1) possible values
of the magnetic quantum number m, i.e. we can have

ℓ = 0, 1, 2, . . . ; m = −ℓ,−ℓ+ 1, . . . ,−1, 0, 1, . . . , ℓ− 1, ℓ . (4.66)

Some specific examples of permitted values for m are:

ℓ = 0, mℓ = 0

ℓ = 1, mℓ = −1, 0,+1

ℓ = 2, mℓ = −2,−1, 0,+1,+2

ℓ = 3, mℓ = −3,−2,−1, 0,+1,+2,+3

ℓ = 4, mℓ = −4,−2,−1, 0,+1,+2,+3,+4
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The volume element in spherical coordinates is defined as,

d3r = r2 sin θ dr dθ dϕ; (4.67)

from which the normalization condition, |ψ|2 = 1, becomes∫
|ψ|2r2 sin θ dr dθ dϕ = A2

overall

∫
|R|2r2 dr

∫
|Y |2 sin θ dθ dϕ = 1. (4.68)

We can normalize the radial wave function R, and angular wave function Y , separately
by imposing the following conditions∫ ∞

0

A2
radial|R|2r2 dr = 1, → Aradial,∫ 2π

0

∫ π

0

A2
angular|Y |2 sin θ dθ dϕ = 1, → Aangular.

(4.69)

So, the overall constant becomes Aoverall = AradialAangular.

The normalized angular wave functions6 are called spherical harmonics, and are defined
as

Y m
ℓ (θ, ϕ) = ϵ

√
(2ℓ+ 1)

4π

(ℓ− |m|)!
(ℓ+ |m|)!

eimϕPm
ℓ (cos θ), (4.70)

where ϵ = (−1)m for m ≥ 0 and ϵ = 1 for m ≤ 0. It can be proved that the spherical
harmonics are orthogonal, so that∫ 2π

0

∫ π

0

[Y m
ℓ (θ, ϕ)]∗[Y m′

ℓ′ (θ, ϕ)] sin θ dθ dϕ = δℓℓ′ δmm′ , (4.71)

which confirms that the normalization condition is met.

4.4.2 The Radial Equation

The first of eqns. (4.56) can be written as,

d

dr

(
r2
dR

dr

)
− 2mr2

ℏ2
[V (r)− E]R = ℓ(ℓ+ 1)R. (4.72)

This equation can be simplified by the change of variable

u(r) = rR(r), (4.73)

when R = u/r, dR/dr = [r(du/dr) − u]/r2, (d/dr)[r2(dR/dr)] = r d2u/dr2, and we ob
tain

− ℏ2

2m

d2u

dr2
+

[
V (r) +

ℏ2

2m

ℓ(ℓ+ 1)

r2

]
u = Eu. (4.74)

Equation (4.74) is identical to the 1D Schrödinger equation (4.6) except that the effective
potential is,

Veff = V (r) +
ℏ2

2m

ℓ(ℓ+ 1)

r2
, (4.75)

which includes the so-called centrifugal term (ℏ2/2m)/[ℓ(ℓ + 1)/r2]. It tends to throw
the particle outwards away from the origin, similar to the centrifugal force in classical
mechanics.

6Note: Y −m
ℓ = (−1)mY m

ℓ .
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Following the change of variable, the normalization condition therefore becomes∫ ∞

0

|u|2dr = 1. (4.76)

For the situation under consideration we have,

V (r) =

{
0, r ≤ a;
∞, r > a;

(4.77)

and the radial equation (4.72) becomes

d2u

dr2
=

[
ℓ(ℓ+ 1)

r2
− k2

]
u, (4.78)

where

k =

√
2mE

ℏ
. (4.79)

Case 1: ℓ = 0

For this situation, eqn. (4.78) simplifies to

d2u

dr2
= −k2u, (4.80)

for the boundary condition u(L) = 0, when the solution becomes

u(r) = A sin kr +B cos kr. (4.81)

However, due to R(r) = u(r)/r, we must have B = 0 because (cos ky)/r = ∞ when
r = 0. The boundary condition then requires that sin kr = 0, which means that we must
have ka = nπ, n ∈ N. It therefore follows that, for Case 1, the allowed energies are

En0 =
n2π2ℏ2

2ma2
, (4.82)

which is the same as for the 1D infinite potential well, eqn. (4.13). Normalizing u(r), i.e.∫ a

0

|u(r)|2dr = A2
n0

∫ a

0

sin2(nπr/a) dr = 1, (4.83)

yields An0 =
√

2/a. Note: The upper limit on the integral is equal to a as the value for
ψ(r > a) = 0, from the problem statement. Then, including the angular part, which is
constant for this case, since from eqn. (4.70) we have Y 0

0 (θ, ϕ) = 1/
√
4π, and recalling

that R(r) = u(r)/r, we arrive at

ψn00 =
1√
2πa

sin(nπr/a)

r
. (4.84)

We now use three quantum numbers, n, ℓ, and m to label stationary states, i.e. ψnℓm,
but use just two to label energy, which depends only on n and ℓ, i.e. Enℓ.

Case 2: The General Solution

The general solution to eqn. (4.78) for arbitrary ℓ is more complex than for Case 1, with
the less familiar solution

u(r) = Ar jℓ(kr) +B r yℓ(kr), (4.85)
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where jℓ and yℓ are the spherical Bessel functions of the first and second kind. They are
defined as,

jℓ = (−z)ℓ
(
1

z

d

dz

)ℓ
sin z

z
; yℓ = −(−z)ℓ

(
1

z

d

dz

)ℓ
cos z

z
; (4.86)

The first few spherical Bessel functions are listed in Table (4.3) and some plots are shown
in Fig. (4.6).

Table 4.3: The first few spherical Bessel functions, jℓ and yℓ.

j0 =
sin z

z
y0 = −cos

z

j1 =
sin z

z2
− cos z

z
y1 = −cos

z2
− sin z

z

j2 =

(
3

z3
− 1

z

)
sin z − 3

z2
cos z y2 = −

(
3

z3
− 1

z

)
cos z − 3

z2
sin z

Note: jℓ →
zℓ

(2ℓ+ 1)!!
, yℓ → − (2ℓ− 1)!!

zℓ+1
, for z ≪ 1.

Figure 4.6: Spherical Bessel Function Plots.

On examination of the behavior of spherical Bessel functions as x→ 0, we find that jℓ is
well behaved, but yℓ blows up. Therefore, we conclude that for a physically real solution,
we must have Bℓ = 0. So that eqn. (4.85) reduces to

u(r) = Ar jℓ(kr). (4.87)

To ensure that the solution is consistent with the boundary condition R(L) = 0, k must
be chosen such that

jℓ(ka) = 0. (4.88)

This means that (ka) must be equal to one of the n zeros, βnℓ, of the ℓ
th-order spherical

Bessel function, i.e. ka = βnℓ. Because the spherical Bessel functions are oscillatory,
and the zeros are not located at regular points along r, they have to be calculated
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Table 4.4: First few values for the nth zeros of order-ℓ spherical Bessel function jℓ(z), determined numer-
ically. Compare to zero crossings of plots in Fig. (4.6).

Spherical Bessel Function Zeros, βnℓ

ℓ = 0 ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4

n = 1 3.1416 4.4934 5.7635 6.9879 8.1826
n = 2 6.2832 7.7253 9.0950 10.4171 11.7049
n = 3 9.4248 10.9041 12.3229 13.6980 15.0397
n = 4 12.5664 14.0662 15.5146 16.9236 18.3013

numerically. The parameter n is known as the principle quantum number, with possible
values of 1, 2, 3, 4, . . . Some values for βnℓ are given in Table (4.4).

Therefore, to be consistent with the boundary condition we require

k =
1

a
βnℓ; =⇒ jℓ(βnℓ r/a) = 0. (4.89)

Some plots of jℓ(βnℓ r/a) are shown in Fig. (4.7), which indicates that the boundary
condition at r = a is enforced.

Figure 4.7: Example plots for reduced spherical Bessel functions, jℓ(βnℓ r/a).

From eqns. (4.79) and (4.89) we see that for Case 2, the allowed energies are given by

Enℓ =
ℏ2

2ma2
β2
nℓ. (4.90)

Some energy levels are included in Table (4.5) that have been calculated using electron
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mass, m = 9.1093837 × 10−31 [kg], reduced Planck constant, ℏ = 1.054571817 × 10−34

[m2kg/s] and spherical potential well radius, a = 10−8 [m]. Note: The energy levels for
ℓ = 0 are the same as those for the 1D potential well, see Table (4.1).

Table 4.5: Energy Levels for Spherical Potential Well

Enl [J]

ℓ = 0 ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4

n = 1 6.0247E-22 1.2325E-21 2.0277E-21 2.9808E-21 4.0871E-21
n = 2 2.4099E-21 3.6430E-21 5.0494E-21 6.6241E-21 8.3631E-21
n = 3 5.4222E-21 7.2580E-21 9.2696E-21 1.1454E-20 1.3807E-20
n = 4 9.6395E-21 1.2078E-20 1.4693E-20 1.7483E-20 2.0445E-20

Enl [eV]

ℓ = 0 ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4

n = 1 3.7606E-03 7.6932E-03 1.2657E-02 1.8606E-02 2.5511E-02
n = 2 1.5042E-02 2.2740E-02 3.1518E-02 4.1348E-02 5.2203E-02
n = 3 3.3845E-02 4.5304E-02 5.7861E-02 7.1495E-02 8.6185E-02
n = 4 6.0170E-02 7.5389E-02 9.1715E-02 1.0913E-01 1.2762E-01

Normalization

Finally, recalling that R(r) = u(r)/r, the wave function solutions to the Schrödinger time
independent equation (4.55) are

ψnℓm(r, θ, ϕ) = Anmℓ jℓ(βnℓ r/a) Y
m
ℓ (θ, ϕ), (4.91)

where the constants Anmℓ, have to be determined by normalization. This means that we
have to choose Anmℓ such that∫ a

0

∫ 2π

0

∫ π

0

ψ(r, θ, ϕ)∗ψ(r, θ, ϕ) r2 sin θdr dθ dϕ =

∫ a

0

∫ 2π

0

∫ π

0

|ψ|2 r2 sin θdr dθ dϕ = 1,

(4.92)
where we have employed the infinitesimal volume of eqn. (4.67). Note: The upper limit
on the integral radial term is equal to a as the value for ψ(r > a) = 0, from the problem
statement. As discussed above, we calculate separate angular and radial normalization
constants, so that we have from eqn. (4.69),

Anmℓ = AnℓAmℓ. (4.93)

Values for Amℓ and Anℓ are given in Tables (4.6) and (4.7), and some example plots of
associated wave functions ψnℓm, and probability density functions ρ = |ψnℓm|2, are given
in Figures (4.8) and (4.9).

Table 4.6: Normalization Constants - Angu-
lar

Amℓ, m ≤ ℓ.

ℓ = 0 ℓ = 1 ℓ = 2 ℓ = 3

m = 0 1.0 1.0 1.0 1.0
m = 1 - 1.0 1.0 1.0
m = 2 - - 1.0 1.0
m = 3 - - - 1.0

Table 4.7: Normalization Constants - Radial, a = 10−8

Anℓ × 10−8

ℓ = 0 ℓ = 1 ℓ = 2 ℓ = 3

n = 1 2.506628 3.071142 3.558368 3.997983
n = 2 3.544908 3.963508 4.344382 4.697816
n = 3 4.341608 4.689527 5.014220 5.320530
n = 4 5.013257 5.317384 5.605422 5.880068
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Figure 4.8: Examples showing wave function solutions ℜ(ψnℓm) to the Schödinger equation for a particle
in a 3D spherical potential well of radius r = 10[nm]. Plots were generated in python using the mayavi
package, and include 3D isosurfaces of the solution.

Figure 4.9: Examples showing probability density function solutions ρ = |ψnℓm|2 to the Schödinger equation
for a particle in a 3D spherical potential well of radius r = 10[nm]. Plots were generated in python using
the mayavi package, and include 3D isosurfaces of the solution.

5 Finite Potential Well

Figure 5.1: The finite square well potential.

Here we follow closely D Griffiths [Gri-95] and consider bound states E < 0), with the
time independent Schrödinger equation (3.4) in one dimension, i.e.

− ℏ2

2m

d2ψ(x)

dx
+ V (x)ψ(x) = Eψ(x), (5.1)
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where the potential is defined as,

V (x) =

{
−V0, for − L < x < L,

0, for |x| > L,
(5.2)

and V0 is a positive constant - see Figure (5.1).

In the region x < −L the potential is zero, so the Schrödinger equation becomes

− ℏ2

2m

d2ψ(x)

dx
= Eψ(x), or

d2ψ(x)

dx
= κ2ψ(x), (5.3)

where

κ ≡
√
−2mE

ℏ
. (5.4)

Note: κ will be real and positive as E < 0. The general solution to this equation is

ψ(x) = A exp(−κx) +B exp(κx), (5.5)

but the first term blows up as x→ −∞, so is physically inadmissible, when the solution
becomes

ψ(x) = Beκx, (x < −a). (5.6)

In the region −L < x < L, V (x) = −V0, and the Schrödinger equation become,

− ℏ2

2m

d2ψ(x)

dx
− V0 = Eψ(x), or

d2ψ(x)

dx
= −ℓ2ψ(x), (5.7)

where

ℓ ≡
√

2m(E + V0)

ℏ
. (5.8)

Although E is negative, for a bound state, it must be greater than −V0, i.e. E > Vmin.
The general solution is

ψ(x) = C sin(ℓx) +D cos(ℓx), for (−L < x < L), (5.9)

where C and D are arbitrary constants. Finally, in the region x > L the potential is
again zero; the general solution is ψ(x) = F exp(−κx) +G exp(κx), but the second term
blows up (as x→ ∞), so we are left with

ψ(x) = Fe−κx, for (x > L). (5.10)

Because we are dealing with a symmetric potential, the corresponding stationary states,
as determined from the time independent Schrödinger equation (5.1), will exhibit a sym-
metry property called parity, i.e. ψ(−x) = ±ψ(x). The wave function is then said to
exhibit odd or even parity. Recognizing that a wave function in a symmetric potential
must exhibit odd or even parity allows significant simplification in determining permitted
energy levels for such situations. Refer to [Fre-92, Chapters 3 and 4] for a more detailed
discussion.

We now must solve for the arbitrary constants and we do this by imposing the continuity
conditions of ψ(x) and dψ(x)/dx at the problem boundaries −L and L. Since we are
dealing with solutions that exhibit odd and even parity, we look for odd and even solutions
separately. We will first look for even solutions. The cosine is even (and sine is odd), so
we are looking for solutions of the form,

ψ(x) =


Fe−κx, for (x > L),

D cos(ℓx), for (0 < x < L),

ψ(−x), for (x < 0).

(5.11)
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The continuity of ψ(x), at x = L, requires

Fe−κL = D cos(ℓL), (5.12)

and the continuity of dℓ/dx requires

−κFeκL = −ℓD sin(ℓL)). (5.13)

Dividing eqn. (5.20) by eqn. (5.12) yields

κ = ℓ tan(ℓL). (5.14)

Equation (5.14) can be used to calculate the allowed energies as both κ and ℓ are functions
of E with parameter V0. At this point it helps to introduce some new notation. Let

z ≡ ℓL, and z0 ≡
L

ℏ
√

2mV0. (5.15)

From eqns. (5.4) and (5.8) we see that (κ2 + ℓ2) = 2mV0/ℏ2), so κL =
√
z20 − z2, and

eqn. (5.14) becomes

tan z =
√

(z0/z)2 − 1. (5.16)

This is a transcendental equation for z (and hence for E) as a function of z0, which is a
measure of the size of the well.

It can be solved numerically, or graphically by plotting tan z and
√

(zo/z)2 − 1 on the
same grid and looking for points of intersection - see Figure (5.2).

0 /2 3 /2 2 5 /2        z0
z

0

1

2

3

4

5

6

7

ta
n(

z)
,  

(z
0/z

)2
1

z0 = 10
tan(z)

(z0/z)2 1
solutions, zn

Figure 5.2: Graphical solution to eqn. (5.16), for z0 = 8 (even states).

Once we have solved eqn. (5.16) for z given a particular value of z0 or V0, then from first
of eqns. (5.8) along with eqn. (5.15), we can calculate the energy values En, using

En =
1

2m

(
ℏzn
L

)2

− V0. (5.17)

Two limiting cases are of special interest:

1. Wide, deep well. If zo is very large, the intersections occur just slightly below
zn = nπ/2, with n odd; it follows that

En + V0 ≈
n2π2ℏ2

2m(2L)2
. (5.18)
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The right hand term of this equation (E + V0) represents the energy above the bottom
of the well, and the right hand term the infinite square well energies (see eqn. (4.13) ).
Thus, for an even parity situation, and a well of width 2L, we have half the energies of
the infinite potential well. The remainder come from the odd parity wave functions.

2. Shallow, narrow well. As z0 decreases, there are fewer and fewer bound states,
until finally (for z0 < nπ/2, where the lowest odd state disappears) only one remains.
It is interesting to note, however, that there is always one bound state, no matter how
”weak” the well becomes.

We will now look for odd solutions. The sine is odd, so we are looking for solutions of
the form,

ψ(x) =


Fe−κx, for (x > L),

C sin(ℓx), for (0 < x < L),

−ψ(−x), for (x < 0).

(5.19)

The continuity of ψ(x), at x = L, requires

Fe−κL = C sin(ℓL), (5.20)

and the continuity of dℓ/dx requires

−κFeκL = ℓC cos(ℓL)). (5.21)

Dividing eqn. (5.21) by eqn. (5.20) yields

−κ = ℓ cot(ℓL). (5.22)

Using the previous notation for z and z0 we arrive at −κL =
√
(z20 − z2), which leads to

− cot z =
√
(z0/z)2 − 1, (5.23)

for odd parity situations. It can be solved numerically, or graphically by plotting − cot z
and

√
(zo/z)2 − 1 on the same grid and looking for points of intersection - see Figure

(5.3).

0 2 3 z0
z

0

1

2

3

4

5

6

7

-c
ot

(z
), 

 
(z

0/z
)2

1

z0 = 10
cot(z)
(z0/z)2 1

solutions = zn

Figure 5.3: Graphical solution to eqn. (5.23), for z0 = 10 (odd states).

Once we have solved eqn. (5.23) for z given a particular value of z0 or V0, then again
from eqns. (5.8) and (5.15) we can calculate the energy values En, using eqn. (5.17). A
combined list of odd and even parity energy levels for z0 = 10, which is equivalent to
V0 = 6.11× 10−19 [J] (3.81 [eV]), is shown in Table (5.1).
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Table 5.1: Energy levels En, for the finite potential well.

En z

n [J] [eV] [-]

7 -3.8589E-20 -0.2438 9.679
6 -1.7748E-19 -1.1098 8.423
5 -3.0562E-19 -1.9092 7.069
4 -4.1387E-19 -2.5842 5.679
3 -4.9945E-19 -3.1180 4.271
2 -5.6119E-19 -3.5030 2.852
1 -5.9842E-19 -3.7354 1.428

The associated wave functions are shown in Figure(5.4). Unlike the situation for the
infinite potential well, here there is a probability associated with the particle being found
outside the box, even when the energy of the particle is less than the potential energy
barrier of the walls. This is an example of quantum tunneling.

20 15 10 5 0 5 10 15 20
X (Angstroms)

Vo = 3.813 eV
n = 1, E1 = 3.735 eV
n = 2, E2 = 3.503 eV

n = 3, E3 = 3.118 eV

n = 4, E4 = 2.584 eV

n = 5, E5 = 1.909 eV

n = 6, E6 = 1.110 eV

n = 7, E7 = 0.244 eV

Wavefunctions, n(x)

Figure 5.4: Example showing solutions to the Schödinger equation for a particle in a finite 1D potential
well of length L = 20 [Å]. Plots shown superimposed on bound state energy level lines - ψn are not to scale.

We again look at two limiting cases.

1. Wide, deep well. If zo is very large, the intersections occur just slightly below
zn = nπ/2, this time with n even; it follows again that

En + V0 ≈
n2π2ℏ2

2m(2L)2
. (5.24)

As previously, the right hand term of this equation (E+V0) represents the energy above
the bottom of the well, and the right term the infinite square well energies for a well of
width 2L This fills in the rest of the energy levels for the finite, wide, deep well. Thus, we
see that these energies closely approximate those of the infinite square well (eqn. (4.13)).

2. Shallow, narrow well. If z0 < n/2, there is no odd bound state. The corresponding
condition on V0 is

V0 <
π2ℏ2

8mL2
=⇒ no odd bound states. (5.25)

Finally, the even parity constants D and F from eqns. (5.11) can be evaluated by
normalization. This is achieved by integrating the associated equations squared, from
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−∞ to +∞, and setting the result equal to 1, see Section (3.2.1). We will not perform
these calculation here, but the results are:

D =

√
κ

1 + κL

F =

√
κ

1 + κL
cos(ℓL)eκL, (even parity).

(5.26)

Similarly, the odd parity constant C and F from eqns. (5.19) can also be evaluated by
normalization, and the results are:

C =

√
κ

1 + κL

F =

√
κ

1 + κL
sin(ℓL)eκL, (odd parity).

(5.27)

6 The Quantum Oscillator

The classical mechanics friction-less harmonic oscillator, in its simplest form, is often used
as an analog for the quantum oscillator. For the one dimensional case this is described
mathematically as,

F = −kx = m
d2x

dt2
, (6.1)

where k represents a spring constant and m a mass. Defining the angular frequency as

ω ≡
√
k/m, (6.2)

we find the solution to be,

x(t) = A sin(ωt) +B cos(ωt). (6.3)

The potential is

V (x) =
1

2
kx2, (6.4)

which represents a simple parabola. See also Appendix (A).

However, our task here is to solve the quantum oscillator problem, and we generally
follow [Gri-95]. The quantum oscillator can be represented by the 1D time independent
Schrödinger equation with potential

V (x) =
1

2
mω2x2, (6.5)

where the spring constant has been replaced by eqn. (6.2). So we need to solve,

− ℏ2

2m

d2ψ

dx2
+

1

2
mω2x2ψ = Eψ. (6.6)

It will be observed that there is no explicit time dependence. This is because we are
solving a static problem.

To simplify the analysis we define the dimensionless variable q and transformed energy
variable K as

q ≡
√
mω

ℏ
x, and K ≡ 2E

ℏω
, (6.7)
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when the Schrödinger equation becomes

d2ψ

dq2
= (q2 −K)ψ. (6.8)

In the process of solving eqn. (6.8) we need to also establish the allowed energy values
for E, which we get from K.

We observe that at very large q (and hence very large x), q2 dominates K and we have

d2ψ

dq2
≈ q2ψ. (6.9)

which has the approximate solution,

ψ(q) ≈ Ae−q2/2 +Beq
2/2. (6.10)

The second term on the right hand side blows up at large q, and is therefore non-physical;
hence, we must have B = 0. We now postulate a solution of the form

ψ(q) = h(q)e−q2/2, at large q. (6.11)

Our hope is that we can, similar to as applied previously, represent h(q) in the form of
a simple function. Differentiating eqn. (6.11) once ,and then twice ,we obtain

dψ

dq
=

(
dh

dq
− qh

)
e−q2/2, (6.12)

and
d2ψ

dq2
=

(
d2h

dq2
− 2q

dh

dq
+ (q2 − 1)h

)
e−q2/2. (6.13)

Substituting these results into eqn. (6.8), the Schrödinger equation becomes

d2h

dq2
− 2q

dh

dq
+ (K − 1)h = 0. (6.14)

We now look for a solution in the form of a power series in terms of q, i.e.

h(q) = a0 + a1q + a2q
2 + · · · =

∞∑
0

ajq
j. (6.15)

Differentiating once ,and then twice ,we obtain

dh

dq
= a1 + 2a2q + 3a3q

2 + · · · =
∞∑
0

jajq
j−1, (6.16)

and
d2h

dq2
= 2a2 + 2 · 3a3q + 3 · 4a4q2 + · · · =

∞∑
0

(j + 1)(j + 2)aj+2q
j. (6.17)

Substituting these results into eqn. (6.14), we obtain

∞∑
0

[(j + 1)(j + 2)aj+2 − 2jaj + (K − 1)aj]q
j = 0. (6.18)

Now we use our knowledge that the coefficient of each power of q must equal zero.
Therefore, on rearranging, this equation simplifies to the following recursive expression,

aj+2 =
(2j + 1−K)

(j + 1)(j + 2)
aj, (6.19)
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which is entirely equivalent to the Schrödinger equation. We observe that, given a0 it
recursively generates a2, a4, a6, . . ., and given a1 ,it generates a3, a5, a7, . . . . Thus, we can
write the following even and odd functions as

heven(q) = a0 + a2q
2 + a4q

4 + · · · (6.20)

and
hodd(q) = a1 + a3q

3 + a45q
5 + · · · (6.21)

which leads to
h(q) = heven(q) + hodd(q) (6.22)

It follows, therefore, that eqn. (6.19) determines h(q) in terms of the two arbitrary
constants a0 and a1. However, for very large j, the recursive equation leads the situation
where

aj+2 ≈
2

j
aj, (6.23)

with the approximate solution

aj ≈
C

(j/2)!
, (6.24)

for some constant C. But, for for large q, where higher powers dominate, we have

h(q) ≈ C
∑ 1

(j/2)!
qj ≈ C

∑ 1

k!
q2k ≈ Ceq

2

(6.25)

This means that if h grows according to exp(q2), then according to eqn. (6.11) ψ grows
according to exp(q2/2). This would lead to a non-physical solution that cannot be nor-
malized. For a normalizable solution, the power series must terminate. So, we require
that at some highest value of j, say n, the recursive equation must yield an+2 = 0, which
will truncate either the series heven or hodd - the other one must be zero from the start.
Thus, for a physically acceptable solution, we must have a situation where for a positive
integer n,

K = 2n+ 1. (6.26)

It follows from the second of eqns. (6.7) that the energy levels are defined by

En =

(
n+

1

2

)
ℏω, for n = 0, 1, 2, . . . . (6.27)

For the allowed values of K, the recursion equation becomes

aj+2 =
−2(n− j)

(j + 1)(j + 2)
aj. (6.28)

So, for a particular value of n, hn will be described by a polynomial of degree n, each
with a completely different set of coefficients aj, some of which may be equal to zero.
If n = 0, there is only one term in the series, consequently we must choose a1 = 0 to
eliminate hodd, and with j = 0 eqn. (6.28) yields a2 = 0,

∴ h0(q) = a0, (6.29)

and the associated wavefunction becomes

ψ0 = a0e
−q2/2. (6.30)

For n = 1, again there is only one term in the series, consequently we must choose a0 = 0
to eliminate heven, and with j = 1 eqn. (6.28) yields a3 = 0,

∴ h1(q) = a1q, (6.31)
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and the associated wavefunction becomes

ψ1 = a1qe
−q2/2. (6.32)

For n = 2, j = 0 yields a2 = −2a0, and j = 2 gives a4 = 0, so

h2(q) = a0(1− 2q2), (6.33)

and the associated wavefunction becomes

ψ2 = a0(1− 2q2)e−q2/2, (6.34)

and so on.

In general, hn(q) will be a polynomial of degree n in q, involving even powers only, if n
is an even integer, and odd powers only, if n is an odd integer. Apart from the overall
factor (a0 or a1) they are the so-called Hermite polynomials, defined as

Hn(x) = (−1)nex
2 dn

dxn
e−x2

. (6.35)

The first few Hermite polynomials Hn, are listed in Table (6.1).

Table 6.1: The first few Hermite polynomials, Hn(x)

H0 = 1,
H1 = 2x,
H2 = 4x2 − 2,
H3 = 8x3 − 12x,
H4 = 16x4 − 48x2 + 12,
H5 = 32x5 − 160x3 + 120x,
H6 = 64x6 − 480x4 + 720x2 − 120.

By tradition, the arbitrary multiplicative factor is chosen so that the coefficient of the
highest power of q is 2n. With this convention, the normalized stationary states for the
harmonic oscillator are

ψn(q) =
(mω
πℏ

)1/4 1√
2nn!

Hn(q)e
−q2/2. (6.36)

Plots of wavefunctions ψn(q) and probability density functions |ψn(q)|2 are given in Figure
(6.1).

The quantum and classical oscillators are quite different. The quantum oscillator is
only permitted to have quantized energy levels and is described by positions in space.
Whereas, the classical oscillator can have continuous energy levels and is described by
positions over time. Also, the quantum oscillator has wave-like properties, unlike the
classical oscillator. See Appendix (A) for derivation of the probability density function
for a classical oscillator. Figure (6.2) shows a plot of the probability density function of
a quantum oscillator with high energy level E100, and superimposed is that of the corre-
sponding classical oscillator. We see that as energy levels increase, a new phenomenon
occurs. The particle of the quantum oscillator has higher probability of occurring towards
the edges, becoming lower towards the center.
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Figure 6.1: Left : Wavefunctions ψn(q), for the quantum harmonic oscillator with parabolic potential V .
Right : The corresponding probability density functions |ψn(q)|2. The independent nuclear spatial variable
q = (mk/ℏ2)1/4x, ω =

√
k/m and k represents a spring force constant. The energy levels En = (n+ 1

2
)ωℏ,

are shown on the right of each plot. They are equally spaced, with transitional energies ∆E = ℏω. Unlike
the classical oscillator, the quantum oscillator has a non-zero probability of occurring outside the classical
turning points. The wavefunctions ψn, and probability density functions |ψ(q)|2, are not to scale
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q

201
2n = 100

V = 1
2 q2

| 100(x)|2
(q)

Figure 6.2: Probability density function, |ψ100(q)|2 shown with classical SHM oscillator probability density
function ρ(q) superimposed. The classical turning points are indicated by the vertical dashed lines.

It appears from our model that as the energy levels increase, the quantum system be-
gins to more closely resemble macroscopic objects and, in the limit classical behavior
will emerge from this quantum description. The process by which an object in a quan-
tum state morphs into a classical object is called decoherence. It is part of the crucial
transitioning from quantum to classical existence. Explaining why quantum behavior
is not observable in classical systems is difficult. But intuition says that at some point
the change must occur, and that it should be detectable. However, this is a somewhat
simplistic view as, in the quantum world, intuition can often lead us astray from how
reality behaves. Consequently, how the quantum world transitions to the classical world
is still an open question.

Graham W Griffiths 36 26 May 2023, revised 30 January 2024



Figure 7.1: Tunneling diagram showing the the domain split into three regions: 1) and 3) with zero
potential, and 2) with potential V0 of width L. Particles can be incident, reflected or transmitted, and the
energies considered are E1 < V0 and E2 > V0.

7 Quantum Tunneling

Quantum tunneling is defined as a quantum mechanical process where wave functions can
penetrate through a potential barrier. The transmission through the potential barrier can
be finite and relies exponentially on the barrier width and barrier height. Wave functions
have the genuine probability of disappearing on one side of a barrier and reappearing on
the other side.

For a quantum particle to appreciably tunnel through a barrier three conditions must be
met:

• The height of the barrier must be finite with a narrow width.

• The potential energy of the barrier must exceed the kinetic energy of the particle.

• The particle must exhibit wave like properties. Because the wave function is able to
penetrate through the barrier the implication is that quantum tunneling applies only
to microscopic objects such as protons or electrons, and not macroscopic objects.

If these conditions are met, there is some finite probability of the particle transitioning
to the other side of the barrier.

Consider a quantum system having a potential V (x), see Figure (7.1), defined as,

V (x) =


0, for (−∞ < x < 0)

V0, for (0 ≤ x ≤ L)

0, for (L < x <∞)

(7.1)

with our task of solving the one dimensional Schrödinger equation,

− ℏ2

2m

d2ψ(x)

dx2
+ V (x)ψ(x) = Eψ1(x). (7.2)

For the different regions, where V (x) is defined by eqn. (7.1) and after rearranging, the
one dimensional time independent Schrödinger equation takes the following forms:

Region 1: −∞ < x < 0,
d2ψ1(x)

dx2
+

2mE

ℏ2
ψ1(x) = 0. (7.3)
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Region 2: 0 ≤ x ≤ L,
d2ψ2(x)

dx2
− 2m(V0 − E)

ℏ2
ψ2(x) = 0. (7.4)

Region 3: L < x <∞,
d2ψ3(x)

dx2
+

2mE

ℏ2
ψ3(x) = 0. (7.5)

The general solution for regions 1 and 3, before applying the boundary conditions, will
be in the form,

ψ1(x) = Ae+ik0x +Be−ik0x

ψ3(x) = Ce+ik0x +De−ik0x (7.6)

where k0 =
√
2mE/ℏ represents a wave number, and the complex exponent implies the

solution is oscillatory due to Euler’s formula,

eikx = cos(kx) + i sin(kx), i =
√
−1. (7.7)

The complex exponentials in eqns. (7.6) each represent two traveling waves. The terms
with positive exponents represent right-traveling waves and terms with a negative expo-
nent represent left-traveling waves. This is important as it allows us to imply certain
attributes to regions 1 and 3. In region 1, we can have incident waves traveling to the
right and reflected waves traveling to the left. However, in region 3 we can only have
transmitted waves traveling to the right, as there is no physical mechanism for there to
be waves traveling to the left. Therefore, for region 3, the constant D must equal zero.
This situation is indicated in Figure (7.1)

We now consider region 2 where E < V0. For this situation the general solution, before
applying the boundary conditions, will be in the form,

ψ2,1(x) = Fe+k1x +Ge−k1x (7.8)

where k1 =
√
2m(V0 − E)/ℏ. Because we now have real exponents, the solution is not

oscillatory.

Now consider region 2 where E > V0. For this situation the general solution, before
applying the boundary conditions, will be in the form,

ψ2,2(x) = He+ik2x +Ke−ik2x (7.9)

where k2 =
√
2m(E − V0)/ℏ. Because we again have complex exponents, the solution

will be oscillatory.

Continuity conditions at region boundaries require:

ψ1(0) = ψ2(0)

ψ2(L) = ψ3(L)
(7.10)

Smoothness conditions at region boundaries require:

dψ1(x)

dx

∣∣∣∣
x=0

=
dψ2(x)

dx

∣∣∣∣
x=0

dψ2(x)

dx

∣∣∣∣
x=L

=
dψ3(x)

dx

∣∣∣∣
x=L

(7.11)
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We will now use the above boundary conditions to simplify the problem.

Case a. E < V0

The continuity conditions yield at x = 0,

A+B = F +G, (7.12)

and smoothness conditions yield at x = 0,

ik0A− ik0B = k1F − k1G. (7.13)

We also have for continuity conditions at x = L

Fek1L +Ge−k1L = Ceik0L, (7.14)

and smoothness conditions yield at x = L,

k1Fe
k1L − k1Ge

−k1L = ik0Ce
ik0L. (7.15)

Recall that constant D has been set to zero as left-traveling waves are not possible in
region 3. This means we only have 4 equations but 5 unknowns: A, B, C, F and G. So
the system is under-determined.

Even though the particle energy E is less than the barrier potential V0, the above equa-
tions show that there is a non-zero chance of a right-moving particle, the incident particle,
passing through the barrier. Now the intensity of a wave is proportional to its amplitude
squared. Therefore, defining the right traveling wavefunction in region 1 as

ψ1,R = Aeik0x (7.16)

the amplitude squared is simply equal to the wavefunction multiplied by its complex
conjugate. Let’s define the probability of the right-moving particle in region 1 as being
equal to its intensity; therefore, its probability density function becomes,

P1,R = ψ∗
1,Rψ1,R = (A∗e−ik0x)(Aeik0x) = A∗A. (7.17)

Similarly, let’s define the probability density function of a left-moving particle in region
1 as being equal to

P1,L = ψ∗
1,Lψ1,L = (B∗eik0x)(Be−ik0x) = B∗B. (7.18)

Finally, let’s define probability density function of a right-moving particle in region 3 as
being equal to

P3,R = ψ∗
3,Rψ3,R = (C∗e−ik0x)(Ceik0x) = C∗C. (7.19)

A particle traveling to the right in region 3 must have experienced transmission through
the barrier of region 2. Conversely, a particle traveling to the left in region 1 must have
experienced refection from the barrier of region 2. This is illustrated in Figure (7.1). To
move forward in our analysis, we introduce the concept of transmission and reflection
coefficients; namely, T and R respectively. We define these coefficients as being equal
to the ratios of their respective probabilities with respect to of the probability of the
particle moving to the right in region 1. Thus, we obtain

T =
P3,R

P1,R

=
C∗C

A∗A
, (7.20)

which represents the probability that particle passes through the barrier (quantum tun-
neling); and

R =
P1,L

P1,R

=
B∗B

A∗A
, (7.21)
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which represents the probability that the particle has been reflected from the barrier
(quantum reflection).

If the energy of the incident particle is significantly lower than the barrier height V0,
then it is to be expected that there will be a large reflectivity coefficient and a small
transmission coefficient.

After performing some rather lengthy algebraic manipulation on eqns. (7.12), (7.13),
(7.14) and (7.15), and making use of the hyperbolic relationships

cosh(x =
ex + e−x

2
, sinh(x) =

ex − e−x

2
, (7.22)

we obtain

T =
1

V 2
0

4E(V0 − E)
sinh2(k1L) + 1

. (7.23)

We know that the incident particle must be either transmitted or reflected as there are
no alternative possibilities. Therefore, T +R = 1 and the reflectivity coefficient is given
by

R = 1− T (7.24)

Case b. E > V0

The continuity conditions yield at x = 0,

A+B = H +K, (7.25)

and smoothness conditions yield at x = 0,

ik0A− ik0B = k2H − k2H. (7.26)

We also have for continuity conditions at x = L

Heik2L +Ke−ik2L = Ceik0L, (7.27)

and smoothness conditions yield at x = L,

k2He
k2L − k2Ke

−k2L = ik0Ce
ik0L. (7.28)

Similar to Case a, after performing some rather lengthy algebraic manipulation on eqns.
(7.25), (7.26), (7.27) and (7.28), we obtain

T =
1

V 2
0

4E(E − V0)
sin2(k2L) + 1

. (7.29)

Again we have T +R = 1, and the reflectivity coefficient is given by

R = 1− T (7.30)

We can now explore how T and R change as E varies from being very much smaller
than V0 to being much larger. To facilitate this we introduce the new variable η = E/V0.
Consider a system with the following parameters:

L = 4.5× 10−10, [m]
V0 = 1.6× 10−18, [J]
m = 9.11× 10−31, [kg]
ℏ = 1.055× 10−34, [J s]

(7.31)
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We now let η vary from 0 to 4 and plot T and R in Figure (7.2), using eqn. (7.23) when
η < 1 and eqn. (7.29) when η > 1. We avoid η = 1 as this produces a divide-by-zero
error. Transmission T , clearly starts before E = 1 and reflection R, continues even when
E is much larger than V0. This demonstrates the difference between classical mechanics
and quantum mechanics, because in the latter situation reflection would stop abruptly
and transmission would only start when η > 1. The oscillations are due to the sin() term
in eqn. (7.29) as opposed to the sinh() term in eqn. (7.23).

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
= E/V0)

0.0

0.2

0.4

0.6

0.8

1.0
T,

R

Transmission and Reflection Coefficients

T (E<Vo)
T (E>Vo)
R (E<Vo
R (E>Vo

Figure 7.2: Plots showing how the transmission and reflection coefficients T and R change as the particle
energy ratio η = E/V0, varies from 0 to 4. Transmission T , clearly starts before E = 1 and reflection R,
continues even when E is much larger than V0.

We now consider a problem taken from [Wan-06] with the same parameters as in eqn.
(7.31), except that we reduce the barrier width to

L = 1.8× 10−10. (7.32)

The system has an incident particle with unit intensity and an energy E = 0.6V0. This
means that we are now able to solve eqns. (7.12), (7.13), (7.14) and (7.15), because vari-
able A is equal to 1, which reduces the problem to four equations and four unknowns.
The parameter solution values are given in Table (7.1), and a plot of the resulting wave-
function as it transitions througth the barrier is shown in Figure (7.3).

Table 7.1: Tunneling problem parameter values

A = 1.0 (given)
B = 0.1815481747 - i0.9352973513,
C = -0.1436753713 - i0.2676126167,
F = 0.0180237704 + i0.03354866193,
G = 1.1635244040 - i0.96884601320.
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Figure 7.3: Plot of the real part of the tunneling problem solutions ψ1(x), ψ2(x) and ψ3(x) for regions 1, 2
and 3 respectively. It illustrates how the incident wavefunction transitions through a potential barrier. Note
how the wavefunction is non-oscillatory as it is attenuated through the barrier, and becomes oscillatory again
once it exits the barrier. Also, how the three wavefunctions form a continuous smooth curve throughout,
as demanded by the continuity conditions at region boundaries.

8 The Hydrogen Atom

Figure 8.1: The Hydrogen Atom.

In the hydrogen atom analysis below we largely follow D. Griffiths [Gri-95]. The model
we will use is a positively charged proton with a negatively charged electron circling
around it. We will consider the proton to be essentially stationary, as its mass is very
much greater than that of the electron. This means that we do not have to use the
reduced mass of the proton, as discussed in Appendix (2). They are held together by
Coulomb’s law, eqn. (2.1), such that the potential energy of the electron is

V (r) =

∫ ∞

r

|e2|
4πε0r2

dr = − e2

4πε0r
. (8.1)

The calculations are performed in spherical coordinates, see Figure (4.5), and follow
essentially the same analysis as that outlined in Section (4.4), where a separable approach
is adopted. This assumes the solution for the wave function to be of the form,

ψ(r, θ, ϕ) = R(r)Y (θ, ϕ). (8.2)

The angular part of the Hydrogen atom wave function solution takes the the same form
as the spherical harmonics of eqn. (4.70), i.e.

Y m
ℓ (θ, ϕ) = ϵ

√
(2ℓ+ 1)

4π

(ℓ− |m|)!
(ℓ+ |m|)!

eimϕPm
ℓ (cos θ), (8.3)

where ϵ = (−1)m for magnetic quantum number m ≥ 0 and ϵ = 1 for m ≤ 0.
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The radial part of the Hydrogen atom Schrödinger equation is the same as eqn(4.72), i.e.

d

dr

(
r2
dR

dr

)
− 2mr2

ℏ2
[V (r)− E]R = ℓ(ℓ+ 1)R. (8.4)

However, this equation now needs to account for the non-zero potential V (r); and, after
applying the change of variable

u(r) ≡ rR(r), (8.5)

it simplifies to,

− ℏ2

2m

d2u

dr2
+

[
− e2

4πε0r
+

ℏ2

2m

ℓ(ℓ+ 1)

r2

]
u = Eu. (8.6)

Equation (8.6) can be further simplified by letting

κ ≡
√
−2mE

ℏ
, (8.7)

when it becomes
1

κ2
d2u

dr2
=

[
1− me2

2πε0ℏ2κ
1

(κr)
+
ℓ(ℓ+ 1)

(κr)2

]
u. (8.8)

We now let

ρ ≡ κr, and ρ0 ≡
me2

2πϵ0ℏ2κ
, (8.9)

when we obtain,
d2u

dρ2
=

[
1− ρ0

ρ
+
ℓ(ℓ+ 1)

ρ2

]
u. (8.10)

This is a difficult equation to solve, and we start by examining the asymptotic form of
the solutions.

As ρ → ∞ the constant term in the brackets dominates, and problem becomes approxi-
mately

d2u

dρ2
= u, (8.11)

with general solution,
u(ρ) = Ae−ρ +Beρ. (8.12)

But eρ blows up as ρ→ ∞, so B = 0, and for large ρ we have

u(ρ) ≈ Ae−ρ. (8.13)

However, when ρ→ 0, the centrifugal term dominates and we have approximately

d2u

dρ2
=
ℓ(ℓ+ 1)

ρ2
u, (8.14)

with general solution,
u(ρ) = Cρℓ+1 +Dρ−ℓ. (8.15)

But for this case ρ−ℓ blows up as ρ→ 0, so D = 0, and for small ρ we have

u(ρ) ≈ Cρℓ+1. (8.16)

It should be noted that whilst this argument does not hold for ℓ = 0, the conclusion,
eqn. (8.16), is correct.
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We now need a function say, w(ρ), that will provide a bridge between u(ρ) for ρ→ large
and u(ρ) → small, i.e.

u(ρ) = ρℓ+1e−ρw(ρ). (8.17)

The hope is that this will simplify matters from eqn. (8.10).

Differentiating u(ρ) we obtain

du

dρ
= ρℓe−ρ

[
(ℓ+ 1− ρ)w + ρ

dw

dρ

]
,

d2u

dρ2
= ρℓe−ρ

{[
−2ℓ− 2 + ρ+

ℓ(ℓ+ 1)

ρ

]
w + 2(ℓ+ 1− ρ)

dw

dρ
+ ρ

d2w

dρ2

} (8.18)

Substituting eqns. (8.10) and (8.17) into the second of eqns.(8.18), we obtain after
rearranging,

ρ
d2w

dρ2
+ 2(ℓ+ 1− ρ)

dw

dρ
+ [ρ0 − 2(ℓ+ 1)]w = 0. (8.19)

We now assume that w(ρ) can be expressed as the following power series in ρ,

w(ρ) =
∞∑
j=0

ajρ
j. (8.20)

The problem now reduces to evaluating the coefficients (a0, a1, a2, . . . ). Differentiating
term by term and manipulating the final form,

dw

dρ
=

∞∑
j=0

jajρ
j−1 =

∞∑
j=−1

(j + 1)aj+1ρ
j =

∞∑
j=0

(j + 1)aj+1ρ
j. (8.21)

Differentiating again,
d2w

dρ2
=

∞∑
j=0

j(j + 1)aj+1ρ
j−1. (8.22)

Inserting these equations into eqn.(8.19) yields

∞∑
j=0

j(j + 1)aj+1ρ
j + 2(ℓ+ 1)

∞∑
j=0

(j + 1)aj+1ρ
j

−2
∞∑
j=0

jajρ
j + [ρ0 − 2(ℓ+ 1)]

∞∑
j=0

ajρ
j = 0.

(8.23)

On equating the coefficients of like powers of ρ we obtain,

j(j + 1)aj+1 + 2(ℓ+ 1)(j + 1)aj+1 − 2jaj + [ρ0 − 2(ℓ+ 1)]aj = 0 (8.24)

which, on rearranging, yields the following recursive equation

aj+1 =

{
2(j + ℓ+ 1)− ρ0
(j + 1)(j + 2ℓ+ 2)

}
aj. (8.25)

The process starts with a0 = A (an overall constant that will eventually be fixed by
normalization) and eqn. (8.25) gives us a1. Then from a1 and eqn. (8.25) we get a2 and
so on.
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Now, for large j, which corresponds to large ρ, the coefficients become

aj+1 ≈
2j

j(j + 1)
aj =

2

j + 1
aj; (8.26)

and, therefore

aj ≈
2j

j!
A. (8.27)

If we were to take this result to be the answer we are seeking, our bridging function would
become

w(ρ) = A
∞∑
j=0

2j

j!
ρj = Ae2ρ, (8.28)

when eqn. (8.17) yields
u(ρ) = Aρℓ+1eρ, (8.29)

which blows up for large ρ. The resulting positive exponential is precisely the asymptotic
behavior we didn’t want in eqn. (8.17), even though it is to be expected. This is because
it does represent the asymptotic form of some solutions to the radial equation. However,
they are not ones we require because they cannot be normalized. For the result of eqn.
(8.28) to be useful, it is clear that the series must terminate. This means there must be
some j = jmax such that

ajmax+1 = 0. (8.30)

The effect of this, due to recursive eqn. (8.25), is that coefficients aj = 0, j > jmax, and
this provides the key to unlocking a solution to the radial equation.

For the foregoing argument to be true, we see from eqn. (8.25) that we must have

2(jmax + ℓ+ 1)− ρ0 = 0. (8.31)

Defining
n = jmax + ℓ+ 1, (8.32)

the so-called principal quantum number, we obtain

ρ0 = 2n. (8.33)

But from eqns. (8.7) and (8.9)

E = −ℏ2κ2

2m
= − me4

8π2ε20ℏ2ρ20
, (8.34)

so we are now able define the allowed orbital energies as

En = −

[
m

2ℏ2

(
e2

4πε0

)2
]

1

n2
=
E1

n2
, n = 1, 2, 3, . . . . (8.35)

This is the famous Bohr energy equation (2.11), derived in Section (2). A list of energy
levels for the hydrogen atom is given in Table (2.1) and plotted in Figure (2.1).

Combining eqns. (8.9) and (8.33) we find that

κ =

(
me2

4πε0ℏ2

)
1

n
=

1

an
, (8.36)
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where

a ≡ 4πε0ℏ2

me2
= 0.529× 10−10 m, (8.37)

is the so-called Bohr radius. It also follows from eqn. (8.9) that

ρ =
r

an
. (8.38)

We now have reached a point where the spatial wave functions for hydrogen are labeled
by three quantum numbers, namely n, ℓ,m, so that eqn (8.2) becomes

ψn,l,m(r, θ, ϕ) = Rnℓ(r)Y
m
ℓ (θ, ϕ), (8.39)

where, from eqns. (8.5) and (8.17)

Rnℓ(r) =
1

r
ρℓ+1e−ρw(ρ), (8.40)

and w(ρ) is a polynomial of degree jmax = n−ℓ−1 in ρ, whose coefficients are determined
by the recursion equation

aj+1 =
2(j + ℓ+ 1− n)

(j + 1)(j + 2ℓ+ 2)
aj. (8.41)

We are now in a position to calculate the state of lowest energy, the ground state, when
n = 1. Using standard physical constant values, we obtain

E1 = −

[
m

2ℏ2

(
e2

4πε0

)2
]
= −13.6 [eV]. (8.42)

Thus, 13.6 [eV] corresponds to the binding energy of hydrogen, or the energy that would
need to be imparted to the electron in order to ionize the atom. From eqn. (8.32) we
see that this result means that ℓ = 0 and, from eqn. (4.66), we must also have m = 0.
Therefore, the wave function becomes

ψ100(r, θ, ϕ) = R10(r)Y
0
0 (θ, ϕ). (8.43)

The recursion formula truncates after the first term (Equation (8.41) with j = 0 yields
a1 = 0), so w(ρ) is a constant, a0, and

R10(r) =
a0
a
e−r/a. (8.44)

Normalizing this equation in accordance with eqn. (3.6) we have∫ ∞

0

|R10|2r2dr =
|a0|2

a2

∫ ∞

0

e−2r/ar2dr = |a0|2
a

4
= 1, (8.45)

so a0 = 2/
√
a. Since from eqn. (4.70) we have Y 0

0 (θ, ϕ) = 1/
√
4π, so

ψ100(r, θ, ϕ) =
1√
πa3

e−r/a. (8.46)

From eqn. (8.35) we see that for n = 2 we have

E2 =
−13.6

4
= −3.4 [eV]; (8.47)
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which represents the first excited states, where we can have ℓ = 0, when m = 0, or ℓ = 1,
when m = −1, 0, 1. Thus, there are four different states that all have the same energy.
For ℓ = 0 the recursive relation, eqn. (8.41) gives

a1 = −a0 (using j = 0), and a2 = 0 (using j = 1), (8.48)

so w(ρ) = a0(1− ρ), and hence

R20(r) =
a0
2a

(
1− r

2a

)
e−r/2a. (8.49)

For ℓ = 1 the recursive equation terminates the series after just one term, so w(ρ) is a
constant and we find

R21(r) =
a0
4a2

re−r/2a. (8.50)

For each case of R20 and R21, the constant a0 is to be determined by normalization.

For arbitrary n. the possible values of ℓ consistent with eqn (8.41) are

ℓ = 0, 1, 2, . . . , n− 1. (8.51)

For each ℓ, we see from eqn. (4.66) that there are (2ℓ + 1) possible values of m, so the
total degeneracy (see Section (3.3)) of the energy level En is

d(n) =
n−1∑
ℓ=0

(2ℓ+ 1) = n2. (8.52)

The polynomial w(ρ), with coefficients defined by recursion eqn. (8.41), is a function
well known to applied mathematicians. Apart from normalization, it can be written as

w(ρ) = L2ℓ+1
n−ℓ−1(2ρ), (8.53)

where

Lp
q−p(x) ≡ (−1)p

(
d

dx

)p

Lq(x) (8.54)

is an associated Laguerre polynomial and

Lq(x) ≡ ex
(

d

dx

)q (
e−xxq

)
(8.55)

is the qth Laguerre polynomial. So the radial part of the wave function, eqn. (8.40),
becomes

Rnℓ(r) =
1

r

( r

an

)ℓ+1

e−r/anL2ℓ+1
n−ℓ−1(2r/na), (8.56)

The first few Laguerre polynomials are listed in Table (8.1) and some associated Laguerre
polynomials are listed in Table (8.2). The first few radial wave functions are listed in
Table (8.3) and plotted in Figure (8.2).

Substituting eqn. (8.56) into eqn. (8.2), the normalized hydrogen wave functions become

ψnℓm =

√(
2

na

)3
(n− ℓ− 1)!

2n[(n+ ℓ)! ]
e−r/na

(
2r

na

)ℓ

L2ℓ+1
n−ℓ−1(2r/na)Y

m
ℓ (θ, ϕ), (8.57)

where a = 0.529−10, see eqn. (8.37).
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Note: Equation (8.57) is a corrected version of the wave funcion given on page 139 of
[Gri-95]. It is one of the very few realistic systems that can be solved in exact closed
form. They are also mutually orthogonal, i.e.∫

ψ∗
nℓmψn′ℓ′m′ r2 sin θ dr dθ dϕ = δnn′ δℓℓ′ δmm′ . (8.58)

Some example 3D plots of the hydrogen wave functions ψ(r, θ, ϕ), and probability density
functions ρ = |ψ(r, θ, ϕ)|2, are included below in Figures (8.3) and (8.4).

Table 8.1: The first few Laguerre polynomials, Lq(x).

L0 = 1

L1 = −x+ 1

L2 = x2 − 4x+ 2

L3 = −x3 + 9x2 − 18x+ 6

L4 = x4 − 16x3 + 72x2 − 96x+ 24

L5 = −x5 + 25x4 − 200x3 + 600x2 − 600x+ 120

L6 = x6 − 36x5 + 450x4 − 2400x3 + 5400x2 − 4320x+ 750

Table 8.2: Some associated Laguerre polynomials, Lp
q−p(x).

L0
0 = 1 L2

0 = 2

L0
1 = −x+ 1 L2

1 = −6x+ 18

L0
2 = x2 − 4x+ 2 L2

2 = 12x2 − 96x+ 144

L1
0 = 1 L3

0 = 6

L1
1 = −2x+ 4 L3

1 = −24x+ 96

L1
2 = 3x2 − 18x+ 18 L3

2 = 60x2 − 600x+ 1200

Figure 8.2: Plots of the first few hydrogen radial wave functions, Rnl(r).
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Table 8.3: The first few radial wave functions for hydrogen, Rnℓ(r).

R10 = 2a−3/2 exp(−r/a)

R20 =
1√
2
a−3/2

(
1− 1

2

r

a

)
exp(−r/2a)

R21 =
1√
24

a−3/2
( r
a

)
exp(−r/2a)

R30 =
2√
27

a−3/2

(
1− 2

3

r

a
+

2

27

( r
a

)2)
exp(−r/3a)

R31 =
8

27
√
6
a−3/2

(
1− 1

6

r

a

)( r
a

)
exp(−r/3a)

R32 =
4

81
√
30

a−3/2
( r
a

)2
exp(−r/3a)

R40 =
1

4
a−3/2

(
1− 3

4

r

a
+

1

8

( r
a

)2
− 1

192

( r
a

)3)
exp(−r/4a)

R41 =

√
5

16
√
3
a−3/2

(
1− 1

4

r

a
+

1

80

( r
a

)2) r

a
exp(−r/4a)

R42 =
1

64
√
5
a−3/2

(
1− 1

12

r

a

)( r
a

)2
exp(−r/4a)

R43 =
1

768
√
35

a−3/2
( r
a

)3
exp(−r/4a)

Figure 8.3: Examples showing wave function solutions ℜ(ψnℓm) to the Schödinger equation for a hydrogen
atom. Plots were generated in python using the mayavi package, and include 3D isosurfaces of the solution.

Figure 8.4: Examples showing probability density function solutions ρ = |ψnℓm|2 to the Schödinger equation
for a hydrogen atom. Plots were generated in python using the mayavi package, and include 3D isosurfaces
of the solution.
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It is worth emphasizing the following paragraph by D. Griffiths [Gri-95]:

In principle, if you put a hydrogen atom into some stationary state ψnlm, it
should stay there forever. However, if you tickle it slightly (by collision with
another atom, say, or by shining light on it), then the atom may undergo
a transition to some other stationary state - either by absorbing energy and
moving up to a higher-energy state, or by giving off energy (typically in the form
of electromagnetic radiation) and moving down7. In practice such perturbations
are always present; transitions (or, as they are sometimes called, ”quantum
jumps”) are constantly occurring, and the result is that a container of hydrogen
gives off light (photons), whose energy corresponds to the difference in energy
between the initial and final states:

Eend = Ei − Ef = −13.6 eV

(
1

n2
i

− 1

n2
f

)
. (8.59)

8.1 Hydrogen atom degeneracy

The degree of degeneracy of a Hydrogen atom is calculated from the number of possible
linearly independent energy eigenstates corresponding to the energy En of the atom. For
a hydrogen atom, the energy eigenstates are derived from its wave function Ψnℓm, where:

• Principal quantum number n = 1, 2, 3, · · ·
• Azimuthal or Orbital Angular momentum quantum number ℓ = 0, 1, 2, . . . , n − 1.
So there are n possibilities.

• Magnetic Quantum numberm = 0,±1,±2, . . . ,±ℓ. So there are (2ℓ+1) possibilities.

Hence for a given Principal quantum number n,

• The total number of possible energy eigenstates associated with Ψnlm, is given by,

d =
n−1∑
ℓ=0

(2ℓ+ 1) = 1 + 2
n−1∑
ℓ=1

ℓ±
n−1∑
ℓ=1

1 = 1 + 2

(
(n− 1)n

2

)
+ (n− 1),

= n2.

(8.60)

Therefore,

The degree of degeneracy of a Hydrogen atom = n2. (8.61)

Appendices

Appendix A Classical Harmonic Oscillator - Position Probabil-
ity Density

The classical harmonic oscillator is a useful analog for the quantum oscillator, see section
(6). We assume a a friction-less system with weight m, attached to a spring with spring
constant k. From conservation of energy, we have total energy = potential energy +
kinetic energy, i.e.

P.E. =

∫
Fdx =

∫
kxdx =

1

2
kx2, (A.1)

7By its nature, this involves a time-dependent interaction, so will be govened by the time-dependent Schrödiner equation.
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K.E. =
1

2
mv2 =

1

2
m

(
dx

dt

)2

, (A.2)

where x represents displacement and t time. Therefore, total energy becomes,

E = P.E. + K.E. =
1

2
kx2 +

1

2
m

(
dx

dt

)2

= constant. (A.3)

But at the turning points when x = ±a, the particle will be stationary for an instant
and the kinetic energy will be zero. This gives

E =
ka2

2
. (A.4)

Substituting back into the total energy equation gives

dx

dt
=

√
k(a2 − x2)

m
= v, (A.5)

where v represents the particle’s velocity. But the particle goes from −a to +a, and then
back to −a for a complete cycle. Therefore, we can integrate to obtain an expression for
the oscillator period T in terms of x, where we obtain

T =

∫ +a

−a

√
m

k(a2 − x2)
dx = 2π

√
m

k
. (A.6)

We now let the probability of finding the particle in a narrow region of length ∆x at
position x be ρ(x)∆x, and let ∆t be the time required for the particle to cross ∆x. Here,
ρ(x) is the probability density function for the particle’s position, x. Since the particle
crosses ∆x twice during each complete cycle of the oscillation, we have ρ(x)∆x = 2∆t/T
or, ρ(x) = 2/(vT ). Rearranging using eqn. (A.5), we finally arrive at

ρ(x) =
1

π
√
a2 − x2

. (A.7)

As a check, we see that ∫ a

−a

ρ(x) = 1. (A.8)

This is correct as the particle must be found somewhere within the domain −a ≤ x ≤ a.
Also, because the particle travels more slowly towards the turning points and is fastest
at the center, the probability of finding the particle at ±a is greatest. Conversely, the
probability of finding the particle at the center is lowest. This is shown clearly in Figure
(A.1) for different turning point values.

Appendix B Vector Spaces

A vector space is defined as:

A set of objects (vectors) that satisfy the following rules:

For any vectors u, v, w and scalars a,b:

· u+ v is also a vector · −u exists· au is also a vector · a(bu) = ab(u)· u+ (v + w) = (u+ v) + w · 1u = u· u+ v = (v + u) + w · a(u+ v)u = au+ av· 0 (the zero vector) exists · (a + b)u = au+ bu
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Figure A.1: Some plots showing probability density curves for the classical SHM oscillator, for various
turning point values.

The above rules make no reference to numbers or arrows/pointers. This is because, for
a vector space, the term vector can apply to any set of objects. A vector space consists
of a set of abstract objects with a defined structure and/or pattern, not only numerical
vectors having the properties of length and direction. So vector spaces can include real-
and complex-valued objects.

In quantum mechanics vectors use the ket symbol |ψ⟩, and the reasons will be described
subsequently.

B.1 Hilbert Space

For our purposes we need to add the following additional rule to those listed above

· Every convergent sum of vectors must converge to an element inside the vector space.

So, we need,
∞∑
i

|Ei⟩ → |ψ⟩ (B.1)

This is called a Hilbert Space, which is denoted as H . It is defined as:

A vector space equipped with an inner product that is Cauchy complete.

An inner product is approximately equal to a dot product, and Cauchy complete means
that:

Every convergent sequence of vectors (e.g. partial sum of infinite linear combi-
nation) converges to an element inside the vector space.

B.2 Inner Product

In quantum mechanics, an inner product is usually written using the bra-ket notation as

⟨ψ|ϕ⟩ , (B.2)

where |ϕ⟩ is a general state in ket-space. All physical states are vectors in this space. The
space is spanned by an infinite set of basis vectors |j⟩ where j can be a discrete index or
a continuous index, such as x.
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Similarly, ⟨ψ| is a vector in bra-space. This is the dual space to ket-space, and there is a
one-to-one correspondence between the two spaces. Because of the one-to-one relation-
ship, the same principles apply to the bra-space. There are corresponding basis vectors
|j⟩, the dual to the basis vectors in ket-space.

An inner product ⟨ψ⟩ represents a mapping from vectors to scalars that satisfies the
following rules for any vectors ψ, ϕ, ξ and scalar a:

· ⟨ψ|ξ + ϕ⟩ = ⟨ψ|ξ⟩+ ⟨ψ|ϕ⟩· ⟨ψ|aϕ⟩ = a ⟨ψ|ϕ⟩
· ⟨ψ|ϕ⟩ = ⟨ϕ|ψ⟩†· for |ψ⟩ ≠ 0, ⟨ψ|ψ⟩ > 0

where † represents the complex conjugate transpose. To clarify, given a ket |ϕ⟩, the
corresponding bra ⟨ϕ| is equal to the transpose complex conjugate of |ϕ⟩, commonly

written as ⟨ϕ| = |ϕ⟩†. For an operator, we have the corresponding situation Â† = (Â∗)T

- see Appendix (C.1).

In the notation above, a bra next to a ket, implies matrix multiplication. For example,
let

⟨ψ| = [2 + i2, 3− i2, 2 + i], |ϕ⟩ =

 1− i2
2 + i3
−1 + i6

 , (B.3)

then performing a matrix multiplication yields

⟨ψ|ϕ⟩ = (10 + i14). (B.4)

For quantum mechanics, we emphasize that the following special inner product rule (the
third rule above) is required

⟨ψ|ϕ⟩ def
= ⟨ϕ|ψ⟩† , (B.5)

where † implies the complex conjugate, and the result can be complex. Also, converting
from a “ket” to a “bra” requires a complex conjugate matrix transpose and visa versa.
This is referred to as an anti-linear operation. So, for the above example we have,

⟨ϕ| = [1 + i2, 2− i3,−1− i6, |ψ⟩ =

2− i2
3 + i2
2− i

 , (B.6)

Then performing a matrix multiplication and taking the complex conjugate of the result
yields

⟨ϕ|ψ⟩ = (10 + i14), (B.7)

as expected.

This special rule ensures that the inner product with its self is always real, i.e.

⟨ϕ|ϕ⟩ def
= ⟨ϕ|ϕ⟩† (real) (B.8)

Also, if we take the square root of the inner product of a ket with its self, i.e.
√

⟨ϕ|ϕ⟩,
the result is equal to the magnitude of the ket |ϕ⟩. In addition, two vectors ψ and ϕ are
orthogonal if their inner product is equal to zero, i.e. ⟨ψ|ϕ⟩ = 0.

The reason for the special rule is that in quantum mechanics we need to interpret inner
products on states as being equal to probabilities : ⟨ϕ|j⟩ ⟨j|ϕ⟩ for fixed j. This equates to
the probability of measuring the value j for a particular observable. It is guaranteed to

Graham W Griffiths 53 26 May 2023, revised 30 January 2024



be real by virtue of the special inner-product rule. Again, using the above example, we
have

⟨ϕ| = [1 + i2, 2− i3,−1− i6, |ϕ⟩ =

 1− i2
2 + i3
−1 + i6

 , (B.9)

Then performing a matrix multiplication and taking the complex conjugate yields the
real result,

⟨ϕ|ϕ⟩ = ⟨ϕ|ϕ⟩† = 55 + i0. (B.10)

When the inner product holds, it can be used for normalization. This is achieved by
taking the inner product of a state with its self, and setting the result equal to one, i.e.

⟨ϕ(x)|ϕ(x)⟩ = 1 (B.11)

Practically, this usually involves determining the value of a constant that makes∫
D

ρ dx = 1. (B.12)

where ρ = |ϕ(x)|2 = ϕ(x)∗ϕ(x) represents a probability density function - see Section
(3.2.1).

Appendix C Operators and Commutators

C.1 Operators

Operators act on functions, and corresponds to how functions act on quantities. However,
when an operator acts on a function, it results in another function. For example, when
an operator Â acts on wavefunction ψ(x) we get another function ϕ(x), i.e.

Âψ(x) = ϕ(x). (C.1)

This is similar to how a function f(x) acts on a quantity x = a, when we get another
quantity, b.

By convention, operators act on expressions immediately to their right. For two adjacent
operators, there are two separate operations: the first by the right hand operator oper-
ating on the expression to its right, and the second operation consists of the left hand
operator operating on the result of the first operation.

By way of example, consider the following operators Â, B̂, Ĉ, acting on the particular
wavefunction ψ(x, t) = ekx−ωt, where k = 2π/λ is the wave-vector and λ is the wavelength
of the spatial frequency, x represents position and ω = 2πν is the angular frequency, with
ν the frequency of the wave,

Âψ =
∂

∂t
ψ = iω ψ(x),

B̂ψ = x
∂

∂x
ψ = ikxψ(x),

Ĉψ = αψ(x).

(C.2)

Operators, in general, have the following properties:

· (Â+ B̂)ψ = (Âψ + B̂ψ,

· βB̂ψ = β(B̂ψ),

· ÂB̂ψ = Â(B̂ψ), B̂ operates on ψ, and then Â operates on (B̂ψ),

· Â = Â†, Hermitain (self-adjoint),

· ÂB̂ ̸= B̂Â, In general, operators do not commute,
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where Â† = (Â∗)T , and ∗ represent the complex conjugate.

We have seen from eqn. (3.1) that the the Schrörodinger equation can be written as,

iℏ
∂

∂t
Ψ = − ℏ2

2m

∂2

∂x2
Ψ+ V (x)Ψ. (C.3)

But the energy operator is defined as

Ê = iℏ
∂

∂t
; (C.4)

and the momentum operator is defined as,

p̂ = −iℏ ∂
∂x
. (C.5)

So, therefore, the Schrörodinger equation can also be written as

ÊΨ =
p2

2m
Ψ+ V (x)Ψ. (C.6)

Also, the right hand side of the Schrörodinger equation can utilize the Hamiltonian
Operator notation, defined as

Ĥ = − ℏ2

2m

∂2

∂x2
+ V (x). (C.7)

The symbol Ĥ represents the total energy of the particle of mass m in the potential field
V (x). So, using the Hamiltonian operator, the Schrodinger equation can be written as
in eqn. (3.3), i.e.

Ĥ |ψ(t)⟩ = Ê |ψ(t)⟩ , (C.8)

C.2 Commutators

Commutators are used in quantum mechanics in the context of operators.

States in quantum mechanics are represented by vectors in a Hilbert space, and operators
are maps from states to states.

Given two operators A and B, their commutator is defined as [A,B] = AB - BA, where
the order of operation is important.

There are various uses of commutators, but probably the most useful one is between ob-
servables. Given two operators that correspond to physically observable quantities (this
means that they must be Hermitian operators), if their commutator is equal to zero, it
means we can simultaneously measure both physical quantities. Also, it means that the
commutator is a constant of the motion, i.e. its expectation value will be independent of
time. However, if the commutator is non-zero, it means that we cannot simultaneously
know the values of both the observables. Consequently, there is an uncertainty rela-
tionship between the observables, with the commutator providing information on how
knowledge of one observable limits how well the other can be measured. For example, the
famous Heisenberg Uncertainty principle is a direct consequence of the fact that position
and momentum operators do not commute.
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Commutators, in general, have the following properties:

· [Â, c] = 0,

· [Â, Â] = 0,

· [Â, B̂] = −[B̂, Â],

· [cÂ, B̂] = [Â, cB̂] = c[Â, B̂],

· [Â, B̂ ± C] = [Â, B̂]± [Â, Ĉ],

· [ÂB̂, Ĉ] = Â[B̂, Ĉ] + [Â, Ĉ]B̂,

· [Â, B̂Ĉ] = B̂[Â, Ĉ] + [Â, B̂]Ĉ,

where Â, B̂ and Ĉ are operators, and c is a constant.

Appendix D Quantum States

In quantum mechanics we represent a particle by a vector in a vector space. In this
situation, the vector in a vector space represents a quantum state of the particle and
represents all the physical properties of the particle.

Vector spaces are used extensively in Quantum mechanics to calculate quantum states
and other quantum properties of a system, such as: position (x1, x2, x3, . . . ), momentum
(p1, p2, p3, . . . ), energy (E1, E2, E3, . . . ), etc., as well as all the associated probabilities.

Instead of using a standard symbol for a quantum state, such as ψ⃗, we use a different
notation called a ket - see Appendix (B.2), which has the symbol |ψ⟩. This symbol was
first introduced by Paul Dirac [Dir-39] and is therefore known as the Dirac notation.
It is still a vector but provides a powerful short hand for calculating and manipulating
quantum states.

Because we are dealing primarily with linear systems, a quantum state can be represented
by the superposition of all possible outcomes of a measurement, for example energy. We
would therefore have a list of possible energy outcomes represented by energy kets, and
could represent our quantum state vector by a linear combination of them. For example,
using ket notation ,

|ψ⟩ = c1 |E1⟩+ c2 |E2⟩+ c3 |E3⟩+ . . . =
∞∑
i=1

ci |Ei⟩ , (D.1)

where the coefficients ci, relate to the probability of the outcome of its associated en-
ergy, Ei. However, not all states are discrete, some are continuous, e.g. position. For
the position vector we need a different representation that is suitable for a continuous
state, where we use an integral instead of a summation, and a function c(x), instead of
coefficients ci. So the representation becomes,

|ψ⟩ =
∫

dx c(x) |x⟩ . (D.2)

The limits for this integral are implicitly ±∞.

Now consider the position wave function ψ(x). Here the state vector becomes

|ψ⟩ =
∫

dx ψ(x) |x⟩ . (D.3)

So we see that wave functions in quantum mechanics represent coefficients to kets when-
ever the list of kets is continuous.
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For a state with definite momentum p, we write this using the Dirac bra-ket notation as
|p⟩. Similarly, for a state with definite position x, we write this as |x⟩.
We use the inner product operating on two abstract states ψ1 and ψ2 to determine a
probability amplitude of going from one state to the other. This operation is written as,

⟨ψ1|ψ2⟩ =
∫ ∞

∞
ψ∗
1 ψ2dx (D.4)

where ψ∗
1 represents the complex conjugate of ψ1. This inner product projects the state

ψ2 onto ψ1 and determines the amplitude going from ψ2 to ψ1.

To find the probability amplitude for a particle to be at any position x, we take the inner
product of the state of definite x with the state ψ, i.e.

ψ(x) = ⟨x|ψ⟩ (D.5)

To find the probability amplitude for a particle to have any momentum p, we take the
inner product of the state of definite p with the state ψ, i.e.

ψ(p) = ⟨p|ψ⟩ (D.6)

D.1 Stationary States

A stationary state is called stationary because the system remains in the same state
as time progresses. It is a quantum state that is a solution to the time-independent
Schrödinger equation:

Ĥ |ψ⟩ = E |ψ⟩ , (D.7)

where Ĥ is the Hamiltonian operator, ψ is a stationary state that satisfies this equation,
and E represents the eigenvalue of the state ψ. However, the wavefunction itself is not
stationary as it continually changes its overall complex phase. This allows it to form a
standing wave. The oscillation frequency ν of the standing wave, times Planck’s constant
h, is equal to the energy of the state according to the Planck–Einstein relation of eqn.
(2.12), i.e.

E = hν. (D.8)

Appendix E Transition Between States

An electron is a quantum object that simultaneously acts as a wave and as a particle.
When bound as part of an atom, an electron mostly acts like a wave. The electron loca-
tions are described by wave functions that represent cloud-like probability distributions,
which are are called orbitals. These orbitals tend to overlap in space. Thus, when an
electron transitions from one energy level to another, it does not jump from one physical
location to another; rather, the wave function that it is associated with simply changes
shape to that associated with the new energy level. Electron energy level transitions
typically occur within a few nanoseconds or less. Wave functions of higher energy states
tend to have more complex shapes than those of lower energy states.

Appendix F Emission

F.1 Spontaneous Emission

If a light source, the atom, is in an excited state with energy E2, it may spontaneously
decay to a lower energy level (e.g., the ground state) with energy E1, releasing the
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difference in energy between the two states as a photon [Spo-23]. The photon will possess
a frequency ν and an energy hν, i.e.

E2 − E1 = hν, (F.1)

where h is the Planck constant. The phase of the photon in spontaneous emission is
random, as is the direction in which the photon propagates, see figure(F.1). This is not
true for stimulated emission.

Figure F.1: Spontaneous Emission. Source [Spo-23].

Spontaneous transitions are not explainable solely within the framework of the Schrödinger
equation, in which the electronic energy levels are quantized but the electromagnetic field
is not. In order to explain this phenomena quantum mechanics must be extended to a
quantum field theory, where the electromagnetic field is quantized at every point in space.
This theory is known as quantum electrodynamics [Qua-23], and is beyond the scope of
this article.

F.2 Stimulated Emission

Stimulated emission is the process whereby an incoming photon of a specific frequency
interacts with an excited atomic electron (or other excited molecular state), causing it
to drop to a lower energy level. The liberated energy transfers to the electromagnetic
field, creating a new photon with a frequency, polarization, and direction of travel that
are all identical to the photons of the incident wave [Sti-22], see figure (F.2). This is in
contrast to spontaneous emission, which occurs at a characteristic rate for each of the
atoms/oscillators in the upper energy state regardless of the external electromagnetic
field.

Figure F.2: Stimulated Emission. Source [Sti-22].
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Appendix G Quantum Numbers

Schrödinger’s model describes how the electron occupies three-dimensional space, and it
uses three quantum numbers to describe the orbitals or clouds in which electrons can
be found [Qua-23a]. The three coordinates that come from Schrödinger’s wave equation
ψn,ℓ,m, are the principal (n), angular (ℓ), and magnetic (m) quantum numbers. These
quantum numbers describe the size, shape, and orientation in space of the orbitals of an
atom - see Sections (4.4, 8)

Principal Quantum Number. This number, n, describes the electron shell, or energy
level, of an electron. The value of n ranges from 1 to the number of the shell containing
the outermost electron of the associated atom, i.e.

n = 1, 2, . . . . (G.1)

Angular Quantum Number. This number, ℓ, also known as the azimuthal momen-
tum quantum number or orbital quantum number, describes the sub-shell, and gives the
magnitude of the orbital angular momentum through the relation.

L2 = ℏ2ℓ(ℓ+ 1). (G.2)

In chemistry and spectroscopy, ℓ = 0 is called the s orbital, ℓ = 1, the p orbital, ℓ = 2,
the d orbital, and ℓ = 3, the f orbital.

The value of ℓ ranges from 0 to n− 1, so the first p orbital (ℓ = 1) appears in the second
electron shell (n = 2), the first d orbital (ℓ = 2) appears in the third shell (n = 3), and
so on. Thus, we have,

ℓ = 0, 1, 2, . . . , n− 1. (G.3)

Magnetic Quantum Number. This number,mℓ or plainm when there is no ambiguity,
describes the specific orbital (or cloud) within the associated sub-shell. It yields the
projection of the orbital angular momentum along a specified axis, i.e.

Lz = mℓℏ. (G.4)

The values of mℓ take on the following integer values,

−ℓ, . . . , ℓ. (G.5)

The s sub-shell (ℓ = 0) contains only one orbital, and therefore the mℓ of an electron in
an s orbital will always be 0. The p sub-shell (ℓ = 1) contains three orbitals (in some
systems, depicted as three dumbbell-shaped clouds), so the mℓ of an electron in a p orbital
will be -1, 0, or 1. The d sub-shell (ℓ = 2) contains five orbitals, with mℓ values of -2, -1,
0, 1, and 2.

Appendix H Some Definitions

Definition 1. The Kronecker delta is defined as:

δmn =

0, if m ̸= n;

1, if m = n.
(H.1)

Definition 2. Two vectors are said to be orthogonal if they are perpendicular to each
other. i.e. the dot product of the two vectors evaluates to zero.
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Definition 3. A set of vectors {v1, v2, . . . , vn} are said to be mutually orthogonal if
every pair of vectors is orthogonal. i.e. vi · vj = 0, for all i ̸= j.

Definition 4. A set of vectors S is said to be orthonormal if every vector in S has
unit magnitude, and the set of vectors are mutually orthogonal.

Definition 5. An observable is said to be any physical quantity relating to a particle
that can be measured. This includes position, momentum, energy, angular momentum,
or any combination of these linear operators. Also, the corresponding eigenvalues must be
real because they represent the values we would measure in the corresponding eigenstate.

Appendix I Data Related to Quantum Mechanics

c = Speed of light, 2.99792458× 108 [m/s]

e = Unit charge, 1.602176634−19 [C]

E = Energy [J]

h = Planck’s constant, 6.62607015× 10−34 [J s]

ℏ = Planck’s reduced constant, h/(2π), 1.054571817× 10−34 [J s]

me = Mass of electron, 9.1093837× 10−31 [kg]

mp = Mass of proton, 1.67262192× 10−27 [kg]

ε0 = Vacuum permittivity, 8.85418782× 10−12 [F/m]

Appendix J Python Source Code

will be available on www.pdecomp.net
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