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PREFACE
  
The rapid increase of computing power at affordable prices during the past few years, together with 
advances in process modelling and simulation technology, has enabled dynamic process simulation to 
become an established tool in the Process Industry for problem solving and control strategy verification. In 
fact, it is hard to visualise a situation where some critical processes could be implemented without a 
dynamic simulation having previously been performed to verify the viability of the control system. The 
situation has now been reached where these improvements make it possible to produce very accurate 
simulated full-scale process pilot-plants. 
 
Dynamic process simulation differs from purely steady-state simulation in that the former requires the 
mechanical construction of process items be taken into account; the amount of mechanical detail being 
dependant upon the particular application. The reason for this is that dynamic mass, energy and momentum 
balances have to be continuously updated. These calculations are fundamental to dynamic process 
simulation and they require knowledge of volumes, metal mass, etc., to predict the proper dynamic 
behaviour of a particular plant. My intention in writing this technical bulletin was to produce a short 
document that would provide some insight in to the physical basis for the fundamental mass and energy 
balance equations used in process dynamic simulation, and how they are derived. For each accumulation 
process considered, I have first defined the appropriate macroscopic integral and differential equations and, 
when appropriate, followed these by derivations of the partial differential equations which describe the 
associated  microscopic system. For practical problems, solutions are obtained by numerical integration of 
these equations w.r.t. time - analytical solutions are rarely possible due to the highly non-linear nature of 
chemical processes. The equations detailed in this bulletin, together with rigorous thermodynamic and 
physical property predictions, form the basis of process models used in the AspenTech ® dynamic process 
simulators. 
 
It is only by paying great attention to detail that process models can be made sufficiently accurate to reflect 
the operational behaviour of a real plant; this applies particularly to dynamic process models. The best test 
of model accuracy is comparison with real plant behaviour over wide operating regimens. AspenTech ® 
models have consistently met the highest standards as demanded by the Industry, and provided accurate 
predictions of dynamic behaviour for wide-ranging applications. The international recognition of our 
success in achieving this aim is very pleasing to us, though we are not complacent. We have an ongoing 
development programme and are constantly striving to improve our service and to achieve higher and 
higher fidelity models. However, the quality we have obtained is not due solely to the sophistication of the 
mathematics utilised within our models, it is due in equal part to the high level of engineering content 
inherent in them. This results from continuous feedback provided by a team of professionals who use  
AspenTech ® dynamic simulators daily for carrying out demanding dynamic simulation projects. 
 
The bibliography included as Appendix F provides a list of source material for those people who may wish 
to take the subject further. Except where stated to the contrary, Cartesian co-ordinates and SI units have 
been used throughout. 

Graham W Griffiths 
London 

December 1992 
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LIST OF SYMBOLS
 
â =  unit vector collinear with velocity vector V (units) 
a =  fluid particle acceleration vector (m/s2) 
A =  vector function continuous on S (units) 
Cp =  specific heat (kJ/kg/oK) 
D =  pipeline diameter (m) 
D =  mass diffusivity (kg/m2/s) 
Di =  mass diffusivity of ith component (m2/s) 
f  =  Moody friction factor (units) 
F =  force vector (N/m2) 
g =  acceleration vector, due to gravity (9.80665 m/s2) 
h =  specific enthalpy (J/kg) 
Δh =  enthalpy drop from inlet to outlet (J/kg) 
ΔHi

o =  heat of ith reaction (J/m3/s) 
I =  moment of inertia (kg m2) 
j =  mass flux vector (kg/m2/s) 
J =  mass flow due to diffusion (kg/s) 
Ji =  mass flow of ith component due to Diffusion (kg/s) 
k  =  thermal conductivity of solid (W/m/oK) 
K =  specific kinetic energy (J/kg) 
L =  pipeline length (m) 
L =  angular momentum (kg m2/s) 
m =  mass (kg) 
m =  mass accumulation (kg) 
mi =  mass accumulation of ith component (kg) 
n̂ =  unit vector normal to r and θ 
n =  polytropic exponent (units) 
MW =  molecular weight (units)  
N =  revolutions per second (1/s) 
p =  pressure (Pa) 
pg1 =  inlet gas pressure (Pa) 
pg2 =  outlet gas pressure (Pa) 
PD =  power delivered to the shaft by driver (W, J/s) 
PL =  power absorbed by load (W, J/s) 
P =  linear momentum (kg m/s) 
q  =  heat flux vector (J/m2/s). 
Q =  heat transfer rate (J/s) 
r̂ =  unit position vector, etc., refer to Figure 5.1 (units) 
r =  position vector of mass m (m) 
ri =  rate of mass production or depletion per unit volume of ith component due to  

    Homogeneous Reaction (kg/m3/s) 
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Ri =  rate of mass production or depletion of ith component due to   
    Homogeneous Reaction (kg/s) 

R =  ideal gas constant ( 8314.3 J/kg-mole-oK) 
S =  surface vector (Area × outward unit normal vector)  (m2) 
Swall =  wall surface area (m2) 
Swall =  wall surface area vector ( Swall ×  outward unit normal vector)  (m2) 
t =  time (s) 
T =  temperature (oK) 
TD =  torque applied to shaft by driver (kg m) 
TL =  torque exerted by load (kg m) 
T1 =  inlet gas temperature (oK) 
u =  specific internal energy (J/kg) 
v =  control volume (m3) 
v =  mass velocity vector (m/s) 
V =  volume of gas (m3) 
V =  fluid velocity vector (m/s) 
Vi =  fluid velocity vector of ith species (m/s) 
w =  mass flow due to convection (kg/s) 
w i =  mass flow of ith component (kg/s) 
Wg =  mass flow of gas being compressed (kg/s) 
Ws =  mass flow of steam (kg/s) 
W =  work (J/s) 
x,y,z =  spacial co-ordinates in the cartesian system (m) 
Zave =  average of inlet and outlet compressibility (units) 
 
Greek Symbols 
 
α =  thermal diffusivity  ( m2/s) 
ηc =  efficiency of compressor (units) 
ηt =  efficiency of turbine (units) 
θ =  angle between gravitational force and velocity vector (radians). 
θ =  angular displacement of position vector (radians) 
μ =  viscosity (Ns/m2). 
ρ  =  mass density (kg/m3) 
ρi =  mass density of ith component (kg/m3) 
τw  =  stress at pipe wall (Pa) 
ф =  specific potential energy (J/kg) 
ω =  angular speed (radians/s) 
 
Operators 
 
∇.A =  divergence of vector A 
∇T =  gradient of scalar T  
D/Dt =  substantive derivative, refer to Appendix B 
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INTRODUCTION      1
 
 
 
 
 
Process simulation can be defined as: 
 

"Any calculation or set of calculations carried out in order to predict how a Process Plant or 
part of a Process Plant will perform under a certain set of circumstances". 

 
Thus, a procedure for calculating the surface area of a heat exchanger would not be classed as process simulation; 
however, once sized, any subsequent calculation to predict the exchanger's performance under a specified set of 
conditions, would be considered a process simulation. It is of course realised that other valid definitions are 
possible. 
 
Dynamic process simulation is used to study the performance of time-dependant processes. It is becoming an 
increasingly more important main-stream engineering tool that is being used to analyse and design the more 
complex plants being built today. In particular, it is being called upon to investigate the dynamics and control of 
highly integrated multi-process plants which often require more difficult control problems to be being tackled than 
is the case for single plants. It is also becoming essential to use dynamic simulation during the design phase of a 
project because operational requirements, which are having a greater and greater impact on process design, can 
only be resolved by this method. 
 
The theoretical basis for dynamic process simulation has been established for many years, and it has been the lack 
of low cost, powerful computing that has slowed its application. This lack of computing also inhibited the 
development of good, appropriate software which, thankfully is now being redressed. Proprietary developments in 
numerical methods and data handling have enabled robust fast integrators to be incorporated into the AspenTech 
® dynamic simulators. These have provided great improvements in computational speed and have enabled very 
large scale simulations to be handled, including those with complicated discontinuities. 
 
For maximum benefit, the dynamic simulation should be carried out as early as possible in the life of a project. 
This is to avoid engineers proceeding with the detailed design of a plant which may subsequently  require changes 
to be made as a result of deficiencies exposed by simulation. It also means that a simulation model can follow a 
project through its life cycle providing a valuable source of information along the way. 
 
Dynamic simulation is an activity that inherently involves the solution of differential equations having time as the 
independent variable. For dynamic process simulation these differential equations generally represent 
accumulation of mass, energy and momentum in one form or another. It is the rate-of-change of these fundamental 
physical quantities that actually determines the intrinsic dynamic behaviour of a chemical process, and to solve the 
associated  equations involves a significant amount mathematics. The overall dynamic behaviour of a process 
plant is also dependant upon the performance of actuators and their control systems. 
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Dynamic process simulation differs from purely steady-state simulation in that the former requires the mechanical 
construction of process items be taken into account; the amount of mechanical detail being dependant upon the 
particular application. The reason for this is that the dynamic mass, energy and momentum balances have to be 
continuously updated. These calculations are fundamental to dynamic process simulation and they require 
knowledge of volumes, metal mass, etc., to predict the proper dynamic behaviour of a particular plant.  
 
This technical bulletin has been prepared in order to provide some insight into the physical basis for the 
fundamental mass, energy and momentum balance equations used in process dynamic simulation, and how they 
are derived. It is aimed at graduate chemical, mechanical and control engineers who are interested in familiarising 
themselves with the physical basis for dynamic process simulation and, for this reason, the analysis of control 
systems and other associated topics have been excluded. For each accumulation process considered, the 
appropriate macroscopic integral and differential equations are defined and, when appropriate, these are followed 
by derivations of the partial differential equations which describe the associated  microscopic system. For practical 
problems, solutions are obtained by numerical integration of these equations w.r.t. time - analytical solutions are 
rarely possible due to the highly non-linear nature of chemical processes. The equations detailed in this bulletin, 
together with rigorous thermodynamic and physical property predictions, form the basis of process models used in 
the AspenTech ® dynamic process simulators. 
 
Finally, it is appropriate to emphasise that only by paying great attention to detail is it possible to make process 
models that are sufficiently accurate to reflect the operational behaviour of a real plant; this applies particularly to 
dynamic process models. The best test of model accuracy is comparison with real plant behaviour over wide 
operating regimens. AspenTech ® models have consistently met the highest standards as demanded by the 
Industry, and provided accurate predictions of dynamic behaviour for wide-ranging applications. 
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THE DYNAMIC MASS BALANCE      2
 
 
 
 
 
2.1 MACROSCOPIC SYSTEM 
 
If we consider a control volume with mass flowing in and out, then the dynamic mass balance can be 
described as follows: 
 
{Rate of change of Mass accumulation} = Σ{Mass flows in} - Σ{Mass flows out} 
 
Which can be represented mathematically as, 

∫∫∫∫∫∫∫ ρρ
∂
∂

SS
.d .d SjSV -   = dv  

t v
       (1) 

 

 
where, 
 
ρ  =  mass density (kg/m3) 
j =  mass flux vector (kg/m2/s) 
v =  control volume (m3) 
V =  fluid velocity vector (m/s) 
S =  surface vector (Area × outward unit normal vector)  (m2) 
 
The first term on the R.H.S. of the above equation represents mass flow due to Convection and the second 
term represents mass flow due to Diffusion. 
 
For a macroscopic system containing a well mixed homogeneous fluid with a known boundary, equation (1) 
can be integrated to give, 
 

). .( + ). .
d

d
outoutininoutoutoutinin SjSjSVSV  - -( = 

t
v)(

in ρρ
ρ     (2) 
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If the surface vector S is collinear with the velocity vector V and mass flux vector j, then the dot products become 
equal to products of the associated vector magnitudes. Under these circumstances, equation (2) becomes, 

)Sj  Sj( + )SV  SV( = 
t
v)(

outoutininoutoutoutininin −ρ−ρ
ρ

d
d    (3) 

 
For a system with multiple flows in and out equation (3) can be rewritten in engineering units to give a suitable 
working equation, i.e. 
 
 

J  J + w    w   = 
t
m

outinoutin −∑−∑
d
d       (4) 

Where, 
 
J =  mass flow due to diffusion (kg/s) 
m =  mass accumulation (kg) 
w =  mass flow due to convection (kg/s) 
 
Equation (4) represents the macroscopic Continuity or, Total Mass Balance equation, and is used for calculations 
involving systems comprising holdups that can be assumed to contain homogeneous well mixed fluids. 
 
For a dynamic simulation, equation (4) would be integrated w.r.t. time using numerical techniques, either for a 
fixed period or continuously, depending upon the application. 
 
 
2.2 MACROSCOPIC SYSTEM - Multicomponent 
 
When a multicomponent fluid is under consideration then, in addition to the mass balance equation (4), mass 
balance equations are needed for each species, i.e. 
 

R +  J  J +  w     w   = 
t
m ii

out
i
in

i
out

i
in

i
−∑−∑

d
d      (5) 

 
 
Where, 
 
mi =  mass accumulation of ith component (kg) 
Ji =  mass flow of ith component due to Diffusion (kg/s) 
Ri =  rate of mass production or depletion of ith component due to  

    Homogeneous Reaction (kg/s) 
w i =  mass flow of ith component (kg/s) 
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The derivation of equation (5) is carried out in a similar way to that used in section 2.1. Ri is obtained from an 
appropriate Reaction Kinetic Equation and Ji is obtained from the Diffusion Equation. 
 
 
2.3 MICROSCOPIC SYSTEM 
 
The R.H.S. of  equation (1) can be transformed by use of  the Divergence Theorem (see Appendix A), i.e. 
 

∫∫∫∫∫∫∫∫∫∫ ∇ρ∇ρ−
vv

v -v--  d . d ).(  = .d .d
SS

jVSjSV      (6) 

 
Thus, equation (1) can be rewritten as, 

∫∫∫∫∫∫∫∫∫ ∇ρ∇−ρ
∂
∂

vvv
v -v.(  = dv 

t
d . d ) jV      (7) 

 
For a stationary volume the time differential can be included under the integral sign, 

∫∫∫∫∫∫∫∫∫ ∇ρ∇−
∂
ρ∂

∴
v

d .  d )d v -v.(  = v 
t

  
vv

jV      (8) 

 
On rearranging, equation (8) simplifies to, 
 

0 = d . + )∫∫∫ ⎭
⎬
⎫

⎩
⎨
⎧ ∇ρ∇
∂
ρ∂

v
v.( + 

t
 jV       (9) 

 
 
Since the limits of integration are arbitrary, the quantity inside the brackets must be equal to zero. Also, the 
third term inside the brackets can be expanded by use of Fick's law of diffusion, i.e. 

ρ∇D -  = j        (10) 

 
where, 
 
D  =  mass diffusivity (kg/m2/s) 
 



  
Aspen Tech ®  Technical Bulletin  - © 
 
 

 
AspenTech ® Technical Bulletin  - © 

6 

 
Thus, 
 

ρ∇ρ∇−
∂
ρ∂ 2 + ) D.(  = 
t

V       (11) 

 
 
 
Equation (11) represents the microscopic Continuity or,  Total Mass Balance equation. For a unidimensional 
system subject only to axial variations in the z direction, such as a pipeline where radial effects are not considered, 
equation (11) becomes, 
 

z
D + 

z
)V(  = 

t 2

2
z

z
∂
ρ∂

∂
ρ∂

−
∂
ρ∂       (12) 

 
For applications with significant convection flow, the diffusion term in the above equation can often be 
neglected. 
 
For a dynamic simulation, equation (12)  is usually solved using numerical techniques such as: 
 
 

o finite difference, 
o finite element,    
o orthogonal collocation. 
 

 
It is sometimes convenient to group together the  first derivatives of ρ to form the substantive derivative, refer to 
Appendix B. Thus, if we neglect diffusion and differentiate the term in parenthesis, equation (12) can be 
rearranged as shown below, 
 

z
V  = 

t
z

∂
∂

ρ−
ρ

D
D        (13) 

  
or, in vector form, 
 

V.  = 
t

∇ρ−
ρ

D
D         (14) 
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Equation (14) represents the equation of  Continuity for an observer following the fluid at the same velocity. 
In this situation D/Dt represents the substantive derivative operator. 
 
 
2.4 MICROSCOPIC SYSTEM - Multicomponent 
 
When a multicomponent fluid is under consideration then, in addition to the Continuity equation (11), a mass 
balance equation is needed for each species, i.e.  
 
 
 

rD.(  = 
t

 i
i

ii2ii  +  + ) ρ∇ρ∇−
∂
ρ∂∴ V       (15) 

where, 
 
ρi =  mass density of ith component (kg/m3) 
Di =  mass diffusivity of ith component (m2/s) 
ri =  rate of mass production or depletion per unit volume of ith component due to 

    Homogeneous Reaction (kg/m3/s) 
Vi =  velocity of ith species (m/s) 
 
 
Derivation of the above equation is carried out in a similar way to that used in section 2.2. With regard to the 
R.H.S. of equation (15), the first and second terms represent mass transport of the ith component due to 
Convection and Diffusion respectively, whilst the third term represents generation due to Reaction. 
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THE DYNAMIC ENERGY BALANCE - Total           3
 
 
 
 
 
3.1 MACROSCOPIC SYSTEM 
 
If we consider a control volume with mass flowing in and out, then the dynamic energy balance can be 
described as follows: 
 
{Rate of change of Energy accumulation} = Σ{Energy flows in} - Σ{Energy flows out}  
 
Which can be represented mathematically as, 

( ) ( )    d  +  = .d  +  +  o
i∫∫∫∫∫∫∫∫ Δ∑ρφρφ

∂
∂

vv
vHWQ -Kh + dv K +  +u  

t S
SV     (16) 

 
where, 
 
u = specific internal energy (J/kg) 
h = specific enthalpy (J/kg) 
ф = specific potential energy (J/kg) 
K = specific kinetic energy (J/kg) 
ρ = mass density (kg/m3) 
Q = heat transfer (J/s) 
W = work (J/s) 
p = pressure (Pa) 
ΔHi

o = heat of ith reaction (J/m3/s) 
 
 
and, 

ρ
p +u  = h        (17) 

 
For a macroscopic system containing a well-mixed fluid with a known boundary, and where potential and 
kinetic energy effects are minimal, equation (16) can be integrated to give, 
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HvWQh - h = 
t
vu)(

inin
o
ioutoutoutoutinin    +  + ..

d
d

Δ∑−ρρ
ρ

SVSV     (18) 

 
If the surface vector S is collinear with the velocity vector V, then the dot products become equal to products of 
the associated vector magnitudes. Under these circumstances, which would apply to say, a holdup vessel with inlet 
and outlet piping, equation (18) becomes, 
 

H v  + W  Q + hw     hw   = 
t

(mu) o
ioutoutinin Δ∑−∑−∑

d
d      (19) 

 
Neglecting potential and kinetic energy effects is usually justifiable in most practical situations involving process 
plant vessels. However, should it be necessary to include for these effects, then they are easily accounted for in the 
same way as for the enthalpy flows in and out. 
 
Equation (19) represents the macroscopic Total Energy Balance equation, and is used for calculations involving 
systems comprising holdups that can be assumed to contain homogeneous well mixed fluids. 
 
For a dynamic simulation, equation (19) would be integrated w.r.t. time using numerical techniques. 
 
 
3.2 MICROSCOPIC SYSTEM 
 
Using equation (17), the second term on the left-hand side of equation (16) becomes, 

( ) ( ){ }∫∫∫∫ ρφρφ
SS

.d    = .d SVSV  + p  + Ku +   + Kh +     (20) 

 
 
Let, 

) K +  +u  ( = φΩ        (21) 

 
 
 Then, after applying the Divergence Theorem to equation (16) and rearranging, we obtain, 
 

( ) WQvH.p +  + 
t

 
v

−
⎭
⎬
⎫

⎩
⎨
⎧ ∇∑−∇Ωρ

∂
Ωρ∂

∫∫∫  = d  o
iV      (22) 
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If we consider Q to be the rate of heat transfer to the control volume v expressed in terms of heat flux, then 
 
 
 
 
 

∫∫S .dSq = Q         (23) 

 
where, 
 
q  =  heat flux vector (J/m2/s). 
 
 
By use of the Divergence Theorem we obtain, 

∫∫∫∫∫ ∇
v

vqSq d . = .d
S

       (24) 

 
 If we also consider W to be the rate of surface work done on the control volume, then 

[ ]∫∫S .d . SVΤ = W        (25) 

 
where, 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

τττ

τττ

τττ

zzzyzx

yzyyyx

xzxyxx

  

  

  

 = Τ        (26) 

is the stress tensor, where the individual elements have units of pressure (Pa). 
 
For Newtonian fluids, i.e. those that obey Newton's law of viscosity, 

etc  ,...,
dy
Vd = x

xy μτ        (27) 

 
where, 
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μ  = viscosity (Ns/m2), 
 
the Divergence Theorem gives, 
 

[ ] [ ]∫∫∫∫∫ ∇
v

vd  . . = .d . 
S

VΤSVΤ       (28) 

 
 
 
Using the results of equations (24) and (28), and rearranging equation (22) gives, 

( ) [ ] 0 = d   . . + . o
i∫∫∫ ⎭

⎬
⎫

⎩
⎨
⎧ ∇∇∇∑∇Ωρ

∂
Ωρ∂

v
v -H-.p +  + 

t
 VΤqV     (29) 

 
 
Again, since the limits of integration are arbitrary, the quantity inside the brackets must be equal to zero. 
 
 

( ) [ ] 0 =  . . + .o
i VΤqV ∇∇∇∑∇Ωρ

∂
Ωρ∂

∴  - H - .p +  + 
t

      (30) 

 
 
Equation (30) represents the Differential Total Energy Balance equation. 
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THE DYNAMIC MOMENTUM BALANCE  4
 

 
 
 
 
4.1 MACROSCOPIC SYSTEM 
 
If we consider a control volume with mass flowing in and out, then the dynamic momentum balance can be 
described as follows: 
 
{ Net Force } = { Momentum flow in } - { Momentum flow out } 

+ { Rate of change of Momentum accumulation} 
 
Which, neglecting diffusion effects, can be represented mathematically as, 

∫∫∫∫∫ ρ
∂
∂

ρ∑
v

vd  
t

 + ).d( = 
S

VSVVF       (31) 

 
The expression in parentheses of the first term on the R.H.S. of equation (31) represents mass flow across the 
surface dS; thus, multiplying this mass by V gives the corresponding momentum flow. The parentheses also imply 
that the dot product must be performed prior to multiplying by V. 
 
The net force consists of three components which arise due to the effects of: 'gravity', 'pressure' and 'viscous 
friction', i.e. 

FFFF fPg  +  +  = ∑        (32) 

 
The force due to gravity is defined by, 
 

∫∫∫ ρv
vd  = g gF        (33) 

where, 
 
g = acceleration vector, due to gravity (9.80665 m/s2) 
F = force vector (N/m2) 
 
The force due to pressure is defined by, 
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∫∫SP d = SF p         (34) 

The force due to viscous friction is defined by, 
 

∫∫Sf ].d  [ = SΤF        (35) 

 
For a macroscopic system containing a well mixed homogeneous fluid with known boundary, we can substitute 
equations (33), (34) and (35) into equation (31) and integrate to give, 

SΤSSgSVVSVV
V

wallinoutininoutoutoutoutinininin ].  [    +   ).(  ).( = 
dt

)d -p- pv--v(
ρρρ

ρ   (36) 

The surface integrals have been evaluated over the entire system surface, though only part of the surface 
contributes to the momentum balance. Equation (36) represents a system such as a pipeline, where the appropriate 
contributing surfaces are indicated. The last term represents a complex tensor relationship that can be simplified if 
we assume that all viscous friction losses take place at the system surface. Under these conditions the viscous term 
results in a vector collinear with velocity vector V, having magnitude equal to the product of stress and system 
wall surface area, i.e.  

aSSgSVVSVV
V ˆ     + v . . = 

dt
)d

wallwinoutininoutoutoutoutinininin S-p-p- - v(
τρρρ

ρ   (37) 

Where, 
 
â =  unit vector collinear with velocity vector V (units) 
Swall =  wall surface area (m2) 
Swall =  wall surface area vector ( Swall × outward unit normal vector)  (m2) 
τw  =  stress at pipe wall (Pa) 
 
Before we can simplify equation (37) further, it is necessary to find a working relationship for τw.  For relatively 
straightforward systems involving pipelines, we can use bulk flow properties and assume that at steady state, 
forces in the direction of flow are in equilibrium, i.e. 
 

{ Net Pressure Force }  =  { Net Sheer Stress Force At Pipe Wall }. 
 

The above can be expressed mathematically as, 

aSS ˆ =   wallwoutoutin Sp-pin τ        (38) 

or, in scalar form for pipelines having uniform circular cross-section, where inlet and outlet surfaces are normal to 
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flow, 

DL = D¼ p w
2 πτπΔ        (39) 

Where, 
 
D =  pipeline diameter (m) 
L =  pipeline length (m) 
 
We can now use a form of the fundamental Darcy flow equation, 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ρ
⎟
⎠
⎞

⎜
⎝
⎛Δ

2
V.

D
L f = p

2
       (40) 

to eliminate p from equation (39) to give, 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ρ
⎟
⎠
⎞

⎜
⎝
⎛

τ 2
V.

4
f = 

2
w        (41) 

Where, 
 
f  = Moody friction factor (units) 

VDLf
8
1 = S  2

wallw ρπτ∴       (42) 

We now consider a homogeneous system where the surface vectors Sin and Sout are collinear with the velocity 
vector V and , the surface vector Swall is normal to the velocity vector V with friction losses occurring only at the 
vessel wall. Then, by dot multiplying through by the unit velocity vector,  equation (37) is transformed in to a 
scalar function where all the dot products, except for the gravitational term, become equal to products of the 
associated vector magnitudes. Under these conditions, which could apply to incompressible flow in a pipeline, 
equation (37) becomes, 

V2D
f  )p  p(

L
1 + g  )V  V(

L
1  = 

t
V 2

outin
2
out

2
in −−

ρ
θ−− cos

d
d    (43) 

Where, 
 
θ  =  the angle between the gravitational force and the velocity vector (radians). 
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For pipelines having uniform cross section the kinetic energy term is zero, therefore equation (43) can be 
simplified to the following working form, 

θ−−−
ρ

cos
d
d g  V2D

f  )p  p(
L
1 = 

t
V 2

outin       (44) 

 
For a dynamic simulation, equation (44) would be integrated using numerical techniques. 
 
 
4.2 MICROSCOPIC SYSTEM 
 
If we assume a stationary control volume, then on applying the Divergence Theorem to equation (31), we obtain, 
 

∫∫∫∫∫∫ ∂
ρ∂

ρ∇∑
vv

v
t

v d  + d. = VVVF       (45) 

Using equations (33), (34) and (35), equation (45) becomes, 

    d  + d .  = ].d  [  d   d 
SS ∫∫∫∫∫∫∫∫∫∫∫∫∫∫ ∂

ρ∂
ρ∇−ρ

vvv
v

t
vp-v VVVSΤSg    (46) 

 
Applying the Divergence Theorem to equation (46) and rearranging gives, 

0 = d  ]  .[ +  +  . + ∫∫∫ ⎭
⎬
⎫

⎩
⎨
⎧ ∇Δρρ∇

∂
ρ∂

v
vp -

t
 ΤgVVV     (47) 

Again, since the limits of integration are arbitrary, the quantity inside the brackets must be equal to zero. Thus, on 
rearranging the second term we obtain, 
 

0 = ]  .[ +  +  . + ΤgVVV
∇Δρρ∇

∂
ρ∂ p -
t

      (48) 

Equation (48) represents the Differential Momentum Balance equation. 
 
It should be noted that when evaluating equation (48), the second term does NOT represent a simple divergence 
owing to the tensorial nature of ρVV, refer to Appendix C. The physical interpretation of the second term is that it 
represents the rate-of-change of momentum per unit volume by fluid flow.  Equation (48) can be simplified using 
the Continuity Equation (equation (11) ) to formulate the Navier-Stokes Equations, refer to Appendix D. 
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THE DYNAMIC ENERGY BALANCE - Thermal Conduction  5
 
 
 
 
 
5.1 MACROSCOPIC SYSTEM 
 
If we consider a control volume with heat flow in and out, then the dynamic energy balance for a solid can be 
described as follows: 
 
{Rate of change of Energy accumulation} = Σ{Energy flows in} - Σ{Energy flows out} 
 
Which can be represented mathematically as, 
 

∫∫∫∫∫ ρ∂
∂

S
.dSq = dv TC 

t v p        (49) 

 
where, 
 
T =  temperature (oK) 
Cp =  specific heat (kJ/kg/oK) 
 
For a macroscopic system containing a solid with a known boundary, equation (49) can be integrated to give, 
 

SqSq outoutinin . .
d

d
 - = 

t
T)Cv( pρ

      (50) 

For a homogeneous solid where the surface vectors Sin and Sout are collinear with heat flux vectors qin and qout 
respectively, then the dot products becomes equal to the products of the associated vector magnitudes, and 
equation (50) can be written in the working form, 
 

}Q  Q { 
Cm
1 = 

t
T

outin
P

−
d
d       (51) 
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For a dynamic simulation, equation (51) would be integrated w.r.t. time using numerical techniques. 
 
 
 
5.2 THE MICROSCOPIC SYSTEM 
 
From the Divergence Theorem and, assuming a stationary solid, equation (49) can be transformed to, 
 

0 = d  q∫∫∫ ⎭
⎬
⎫

⎩
⎨
⎧ ∇−ρ
∂
∂

v p v.  TCt
        (52) 

 
 
Again, since the limits of integration are arbitrary, the quantity inside the brackets must be equal to zero. 
 

0 = q. TC 
t

  p ∇−ρ
∂
∂

∴         (53) 

 
But, by Fourier's law of heat conduction, 

T = ∇kq         (54) 

 
where, 
 
k  =  thermal conductivity of solid (W/m/oK) 
 
and assuming a homogeneous solid, equation (53) becomes, 
 

0 = Tk  
t
T C 2

p Δ−
∂
∂

ρ         (55) 

 
Let, 

C
k = 

pρ
α          (56) 
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where, 
 
α  =  thermal diffusivity  ( m2/s) 
 
 
 
 
 
 

0 = T  
t
T  2∇α−
∂
∂

∴         (57) 

 
 
 
Equation (57) represents the Thermal Diffusion equation. 
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THE DYNAMIC ENERGY BALANCE - Rotating Systems   6
 
 
 
 
 
6.1 MACROSCOPIC SYSTEM 
 
If we consider a rotating mechanical system subject to driver and load torques, then the dynamic energy balance 
can be described as follows: 
 
{Rate of change of Angular Momentum} = Σ{Driver Torques } - Σ{Load Torques} 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 5.1: Mass Moving About A Central Point 
 
 

For an object 'm' moving about a fixed point 'o', as shown above, the velocity can be expressed in terms of its 
position vector, i.e. 
 

( )rrv ˆ
d
d =  

d
d = r

tt
       (58) 

 
which, on expansion gives, 
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θrv ˆ + ˆ = θ&& rr         (59) 

 
 
 
 
 
 
Where, 
 
r =  position vector of mass m (m) 
θ =  angular displacement of position vector (radians) 
m =  mass of object (kg) 
v =  mass velocity vector (m/s) 
r̂  =  unit position vector, etc., refer to Figure 5.1 (units) 
 
 
When m moves in a circular plane, the magnitude of its position vector is constant and, hence, v is perpendicular to 
r. Thus, by forming a dot product of equation (59) with r̂ , it is seen that, 
 

0 = r&          (60) 

and, consequently, equation (59) reduces to, 
 

θ v ˆ = θ&r         (61) 

 
The angular momentum of an object is defined as the cross product of position vector and linear momentum, i.e. 
 

( ) ( )θrvrPrL ˆ ˆ  =     =     = θ××× &rrmm       (62) 

 
 

( )θrL ˆ  ˆ  = 2 ×θ∴ &mr         (63) 
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nL ˆ  =  n̂  = 2 ωθ∴ rmmr  2&        (64) 

 
 
 
Where, 
 
L =  angular momentum (kg m2/s) 
P =  linear momentum (kg m/s) 
n̂ =  unit vector normal to r and θ 
ω =  angular speed (radians/s) 
 
The moment of inertia for an object moving in a circular path about a central point is defined as, 
 

2mr = I         (65) 

 

nL ˆ  = Iω  ∴         (66) 

 
Rewriting in terms of rotational speed yields, 

nL ˆ 2 = INπ         (67) 

Where, 
 
I =  moment of inertia (kg m2) 
N =  revolutions per second (1/s) 
 
 
We see from the main definition above that the rate-of-change of angular momentum is equal to the sum of the 
applied torques. Thus, on differentiating equation (67) and rearranging we obtain,  

( T  T 
I2

1 = 
t
N

LD −
π

)
d
d        (68) 

 
 
 
Where, 
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TD =  torque applied to shaft by driver(kg m) 
TL =  torque exerted by load(kg m) 
 
 
Power can be expressed in terms of torque and speed, i.e. 

NT2 = P π         (69) 

 
Thus, equation (68) can re rewritten in terms of power rather than torque to give, 
 

( P  P 
IN4

1 = 
t
N

LD2 −
πd

d )        (70) 

Where, 
 
PD =  power delivered to the shaft by driver (W, J/s) 
PL =  power absorbed by load (W, J/s) 
 
 
Equation (70) is in a convenient form for simulation purposes, and would normally be integrated by numerical 
methods.   
 
A mechanical machine, such as a compressor or a turbine, could not of course be represented by a simple mass 
rotating about a fixed point. However, equation (70) is still valid providing the inertia I is correct for the particular 
machinery configuration, refer to Appendix E. It should be noted that, for a coupled rotor machine consisting of a 
number of drivers and loads, the inertias can be summed arithmetically providing they are mounted on the same 
shaft. If they are on different shafts, separated by a gearbox, then the inertias must all be referred to the same speed 
before they are summed, e.g. for a system where the reference speed is taken to be that of the drive shaft, the 
equivalent inertia referred to the drive shaft speed would be, 
 

I 
N
N + I = I L

D

L
2 

Dequivalent D ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
       (71) 

 
 
The ratio of speed NL to ND would normally be fixed and equal to the gearbox ratio. 
 
 
Equation (70) can readily be derived by considering the rate-of-change of kinetic energy. 
 
 
For a steam turbine driver, the useful power developed is given by, 
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hW = P stD Δη         (72) 

 
Where, 
 
Ws =  mass flow of steam (kg/s) 
Δh =  enthalpy drop from inlet to outlet (J/kg) 
ηt =  efficiency of turbine (units) 
 
 
 
For an axial-flow compressor say, acting on a gas which can be represented adequately as a polytropic process, i.e.  

constant = pV n         (73) 

 
 
 the power absorbed is given by, 
 

W   1    
p
p

  
 MW1)/n(n

RTZ = P g
g

g

n / 1)(n 

c
L ⎥

⎥

⎦

⎤

⎢
⎢

⎣

⎡
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−

1

211

η
    (74) 

 
Where, 
 
MW = molecular weight (units) 
n =  polytropic exponent (units) 
pg1 =  inlet gas pressure (Pa) 
pg2 =  outlet gas pressure (Pa) 
R =  ideal gas constant ( 8314.3 J/kg-mole-oK) 
T1 =  inlet gas temperature (oK) 
V =  volume of gas (m3) 
Wg =  mass flow of gas being compressed (kg/s) 
Z1 =  inlet compressibility (units) 
ηc =  efficiency of compressor (units) 
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APPENDIX   A
 

 
 
 
THE DIVERGENCE THEOREM 
 
 
The following is a statement of the Divergence or Gauss Theorem, proofs of which may be found in most 
advanced mathematical texts dealing with the vector calculus. 
 
 

∫∫∫∫∫ ∇
v

vd .  = .d
S

ASA        (A1) 

Where, 
 
A   =  vector function continuous on S, 
∇.A =  divergence of vector A, 
 
 
 
and other symbols have meanings as defined in the main text. 
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APPENDIX   B
 

 
 
 
 
THE SUBSTANTIVE DERIVATIVE 
 
 
 
B.1 THE EULERIAN VIEWPOINT 
 
A fluid flow system may be considered as the motion of fluid particles. Such a system can be analyzed by 
assuming fixed spacial co-ordinates, say (xa ,ya , za ) within the velocity field but with time changing and, hence, 
expressing the velocity of particles passing this by point with respect to time. This approach is referred to as the 
Eulerian viewpoint. Thus, fluid velocity is represented as, 

) , ( tz ,y ,x aaaV         (B1) 

 
The Eulerian viewpoint is appropriate for analysing the velocity of a fluid particle observed by a stationary 
observer, e.g. as it flows past a stanchion of a river bridge. 
 
 
 
B.2 THE LAGRANGIAN VIEWPOINT 
 
An alternative to the Eulerian viewpoint is the Lagrangian viewpoint. In this system a particle is followed and its 
velocity is expressed with respect to its spacial co-ordinates which are themselves a function of time. Thus, fluid 
velocity is represented as, 

) , )(, )(, )(( ttztytxV         (B2) 

 
The Lagrangian viewpoint is appropriate for analysing the velocity of a fluid particle observed by a moving 
observer, e.g. from a moving ship. 
 
 
 
B.3 ACCELERATION OF A FLUID PARTICLE 
 
The acceleration of fluid in a system can be deduced from Newton's second law of motion by considering the time 
rate of change of velocity of one particular particle. By using the fluid velocity field we will be required to adopt 
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the Lagrangian viewpoint. Thus, noting that the co-ordinates are functions of time, we may establish the 
acceleration by employing the chain rule for differentiation, as shown below, 
 

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

∂
∂

tt
z

zt
y

yt
x

x
x ,y ,z ,t

t
VVVVVa  + 

d
d + 

d
d + 

d
d  = ) (

d
d =      (B3) 

 
 
Since the co-ordinates refer to any one particle, it is clear that the time derivatives of x, y and z must be equal to 
the respective scalar velocity components of any one particle. Hence, 

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

∂
∂

tVzVyVx zyx
VVVVa  +  +  +   =       (B4) 

 
 
The acceleration a of a fluid particle is therefore expressed as a function of x, y, z and t, consequently, it is a field 
variable. Equation (B4) corresponds to a Lagrangian viewpoint. 
 
The acceleration of fluid particles in a flow field can be considered to be the superposition of two effects 
represented by equation (B4) above. The first term in parenthesis represents change in a particle's velocity due to a 
change in its position, and is called the convective acceleration. Convective acceleration can occur in a steady-state 
situation, e.g. where a channel converges causing fluid acceleration due to area change. The second term 
represents acceleration due to unsteady change in the velocity field local to the particle and, hence, this is called 
local acceleration; it corresponds to an Eulerian viewpoint. 
 
The differentiation performed in equation (B4) is called the total or substantive derivative and is sometimes 
represented as, 

tD
D = Va         (B5) 

 
and can be applied to a scalar or a vector field. 
 
Where not explicitly defined, symbols have meanings as defined in the main text. 
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APPENDIX   C
 

 
 
 
 
THE DYADIC PRODUCT 
 
 
A dyadic product of two vectors a and b is a special form of second order tensor. The elements of the array form a 
set of products of the elements of the vectors. The dyadic product is represented as shown below, 
 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

ba  ba  ba

ba  ba  ba

ba  ba  ba

 = 

332313

322212

312111

ab        (C1) 

 
 
 
A dyadic is, in general, not commutative, i.e. ab =/  ba. It should be noted that a dyadic product is presented in 
written text as two vectors adjacent to each other without any multiplication operator in between.  
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APPENDIX   D
 

 
 
 
 
THE NAVIER-STOKES EQUATIONS 
 
 
The following is a simplified derivation of the Navier-Stokes Equations. 
 
The Differential Momentum Balance equation, 

0 = ] .[ +  +  . +  ΤgVVV
∇Δρρ∇

∂
ρ∂ p-
t

      (48)(D1) 

 
can be simplified by use of the Continuity Equation. If diffusion effects can be considered negligible, equation 
(11) is simplified to, 

)Vρ∇−
∂
ρ∂ .(  = 
t

         (D2) 

 
The first two terms of equation (D1) can be expanded as shown below, 

VVVVVVVVV . )( + ).(  +  +  = . + ∇ρρ∇
∂
ρ∂

∂
∂

ρρ∇
∂
ρ∂

ttt
    (D3) 

 
Then, from equation (D2) it is seen that the second and third terms on the R.H.S. of equation (D3) sum to zero. 
Thus, 
 

⎭
⎬
⎫

⎩
⎨
⎧ ∇
∂
∂

ρρ∇
∂
ρ∂ VVVVVV .  +   = . + 

tt
      (D4) 
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Substituting the result of equation (D4) into equation (D1), we obtain, 
 

gΤVVV
ρ∇−Δ−

⎭
⎬
⎫

⎩
⎨
⎧ ∇
∂
∂

ρ  + ]  .[= .  + p
t

       (D5) 

 
Equation (D5) is a vector equation which, together with the scalar equation (D2), provides four equations for the 
five unknowns: Vx , Vy , Vz , ρ and p. By including an equation-of-state, 

) T , MW ,( = p ρf         (D6) 

 
which relates Pressure to Density, Molecular Weight and Temperature, we have a complete set of equations that 
together comprise the Navier-Stokes Equations; they represent the main governing equations of fluid dynamics. 
For systems where, for practical purposes, the fluid composition and temperature do not remain constant, 
additional equations are required to obtain a complete solution, refer to sections 2.0 and 3.0 above. 
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APPENDIX   E
 

 
 
 
 
THE MOMENT OF INERTIA 
 
 
 
The following is a definition of the Moment of Inertia for a solid body, derivations of which may be found in most 
texts dealing with Classical Mechanics. 
 

∫∫∫ ρ
v

2 v r = I d         (E1) 

 
Where r represents the distance from the axis of rotation to the elemental mass, ρdv. 
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