Front Cover.
A Compendium of Partial Differential Equation Models
Method of Lines Analysis with Matlab
William E Schiesser • Graham W Griffiths
(Cambridge University Press, ISBN-13: 978-0-521-51986-1)
 
 

Table of Contents

 

 Chapter 1
 Chapter 2
 Chapter 3
 Chapter 4
 Chapter 5
 Chapter 6
 Chapter 7
 Chapter 8
 Chapter 9
 Chapter 10
 Chapter 11
 Chapter 12
 Chapter 13
 Chapter 14
 Appendix 1

 Appendix 2
 Appendix 3

 Appendix 4
 Appendix 5
 Appendix 6
Preface
Introduction to The Method of Lines (MOL)
A One Dimensional, Linear Partial Differential Equation
Green's Function Analysis
Two Nonlinear, Variable Coefficient, Inhomogeneous PDEs
Euler, Navier Stokes and Burgers Equations
Cubic Schrödinger Equation (CSE)
Korteweg-de Vries (KdV) Equation
Linear Wave Equation
Maxwell's Equations
Laplace's Equation
Three dimensional PDE
PDE with a Mixed Partial Derivative
Simultaneous, Nonlinear, 2D PDEs in Cylindrical Coordinates
Diffusion Equation in Spherical Coordinates
Partial Differential Equations from Conservation Principles:
   The Anisotropic Diffusion Equation
Order Conditions for Finite Difference Approximations
Analytical Solution of Nonlinear, Traveling Wave
   Partial Differential Equations:
Implementation of Time Varying Boundary Conditions
The DSS Library
Animating Simulation Results
Color Plates
Index